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abs_error Absolute Error
Description

Calculate absolute error as

Usage

abs(true_value — median_prediction)

abs_error(true_values, predictions)

Arguments
true_values A vector with the true observed values of size n
predictions numeric vector with predictions, corresponding to the quantiles in a second vec-
tor, quantiles.
Value

vector with the absolute error
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See Also

ae_median_sample(), ae_median_quantile()

Examples

true_values <- rnorm(30, mean = 1:30)
predicted_values <- rnorm(30, mean = 1:30)
abs_error(true_values, predicted_values)

add_coverage Add coverage of central prediction intervals

Description
Adds a column with the coverage of central prediction intervals to unsummarised scores as produced
by score()

Usage

add_coverage(scores, by, ranges = c(50, 90))

Arguments
scores A data.table of scores as produced by score().
by character vector with column names to add the coverage for.
ranges numeric vector of the ranges of the central prediction intervals for which cover-
age values shall be added.
Details

The coverage values that are added are computed according to the values specified in by. If, for ex-
ample, by = "model”, then there will be one coverage value for every model and add_coverage ()
will compute the coverage for every model across the values present in all other columns which
define the unit of a single forecast.

Value

a data.table with unsummarised scores with columns added for the coverage of the central prediction
intervals. While the overall data.table is still unsummarised, note that for the coverage columns
some level of summary is present according to the value specified in by.

Examples

library(magrittr) # pipe operator

score(example_quantile) %>%
add_coverage(by = c("model”, "target_type")) %>%
summarise_scores(by = c("model”, "target_type")) %>%
summarise_scores(fun = signif, digits = 2)
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ae_median_quantile Absolute Error of the Median (Quantile-based Version)

Description

Absolute error of the median calculated as

abs(true_value — prediction)

The function was created for internal use within score (), but can also used as a standalone function.

Usage

ae_median_quantile(true_values, predictions, quantiles = NULL)

Arguments
true_values A vector with the true observed values of size n
predictions numeric vector with predictions, corresponding to the quantiles in a second vec-
tor, quantiles.
quantiles numeric vector that denotes the quantile for the values in predictions. Only
those predictions where quantiles == 0.5 will be kept. If quantiles is NULL,
then all predictions and true_values will be used (this is then the same as
abs_error())
Value

vector with the scoring values

See Also

ae_median_sample(), abs_error()

Examples

true_values <- rnorm(30, mean = 1:30)
predicted_values <- rnorm(30, mean = 1:30)
ae_median_quantile(true_values, predicted_values, quantiles = 0.5)
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ae_median_sample Absolute Error of the Median (Sample-based Version)

Description

Absolute error of the median calculated as

abs(true_value — median_prediction)

Usage

ae_median_sample(true_values, predictions)

Arguments
true_values A vector with the true observed values of size n
predictions nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predictions can just be a vector of size n.
Value

vector with the scoring values

See Also

ae_median_quantile(), abs_error()

Examples

true_values <- rnorm(30, mean = 1:30)
predicted_values <- rnorm(30, mean = 1:30)
ae_median_sample(true_values, predicted_values)

available_metrics Available metrics in scoringutils

Description

Auvailable metrics in scoringutils

Usage

available_metrics()

Value

A vector with the name of all available metrics
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avail_forecasts

Display Number of Forecasts Available

Description

Given a data set with forecasts, count the number of available forecasts for arbitrary grouping (e.g.
the number of forecasts per model, or the number of forecasts per model and location). This is
useful to determine whether there are any missing forecasts.

Usage

avail_forecasts(data, by = NULL, collapse = c("quantile”, "sample"))

Arguments

data

by

collapse

A data.frame or data.table with the predictions and observations. For scoring
using score(), the following columns need to be present:

e true_value - the true observed values

* prediction - predictions or predictive samples for one true value. (You
only don’t need to provide a prediction column if you want to score quantile
forecasts in a wide range format.)

For scoring integer and continuous forecasts a sample column is needed:

* sample - an index to identify the predictive samples in the prediction col-
umn generated by one model for one true value. Only necessary for contin-
uous and integer forecasts, not for binary predictions.

For scoring predictions in a quantile-format forecast you should provide a col-
umn called quantile:

* quantile: quantile to which the prediction corresponds

In addition a model column is suggested and if not present this will be flagged
and added to the input data with all forecasts assigned as an "unspecified model").

You can check the format of your data using check_forecasts() and there
are examples for each format (example_quantile, example_continuous, exam-
ple_integer, and example_binary).

character vector or NULL (the default) that denotes the categories over which the
number of forecasts should be counted. By default (by = NULL) this will be the
unit of a single forecast (i.e. all available columns (apart from a few "protected"
columns such as "prediction’ and ’true value’) plus "quantile" or "sample" where
present).

character vector (default is c(”"quantile”, "sample"”) with names of cate-
gories for which the number of rows should be collapsed to one when counting.
For example, a single forecast is usually represented by a set of several quan-
tiles or samples and collapsing these to one makes sure that a single forecast
only gets counted once.
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Value

A data.table with columns as specified in by and an additional column with the number of forecasts.

Examples

avail_forecasts(example_quantile,
collapse = c("quantile"”),
by = c("model”, "target_type")
)

bias_quantile Determines Bias of Quantile Forecasts

Description

Determines bias from quantile forecasts. For an increasing number of quantiles this measure con-
verges against the sample based bias version for integer and continuous forecasts.

Usage

bias_quantile(predictions, quantiles, true_value)

Arguments
predictions vector of length corresponding to the number of quantiles that holds predictions
quantiles vector of corresponding size with the quantiles for which predictions were made.
If this does not contain the median (0.5) then the median is imputed as being the
mean of the two innermost quantiles.
true_value a single true value
Details

For quantile forecasts, bias is measured as

By = (1-2max{i|q;; € QiNqr,i < x¢}) (e < qr0.5)+H(1—2-min{i|qr; € QiAGi > x4 })1(z > Gr0.5),

where @, is the set of quantiles that form the predictive distribution at time ¢. They represent our
belief about what the true value $x_t$ will be. For consistency, we define (); such that it always
includes the element ¢, o = —oo and ¢;; = oo. 1() is the indicator function that is 1 if the
condition is satisfied and $0$ otherwise. In clearer terms, B, is defined as the maximum percentile
rank for which the corresponding quantile is still below the true value, if the true value is smaller
than the median of the predictive distribution. If the true value is above the median of the predictive
distribution, then $B_t$ is the minimum percentile rank for which the corresponding quantile is
still larger than the true value. If the true value is exactly the median, both terms cancel out and
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B, is zero. For a large enough number of quantiles, the percentile rank will equal the proportion
of predictive samples below the observed true value, and this metric coincides with the one for
continuous forecasts.

Bias can assume values between -1 and 1 and is 0 ideally (i.e. unbiased).

Value

scalar with the quantile bias for a single quantile prediction

Author(s)

Nikos Bosse <nikosbosse@gmail.com>

Examples

predictions <- c(
705.500, 1127.000, 4006.250, 4341.500, 4709.000, 4821.996,
5340.500, 5451.000, 5703.500, 6087.014, 6329.500, 6341.000,
6352.500, 6594.986, 6978.500, 7231.000, 7341.500, 7860.004,
7973.000, 8340.500, 8675.750, 11555.000, 11976.500

)

quantiles <- ¢(0.01, 0.025, seq(@.05, 0.95, 0.05), 0.975, 0.99)
true_value <- 8062

bias_quantile(predictions, quantiles, true_value = true_value)

bias_range Determines Bias of Quantile Forecasts based on the range of the pre-
diction intervals

Description

Determines bias from quantile forecasts based on the range of the prediction intervals. For an
increasing number of quantiles this measure converges against the sample based bias version for
integer and continuous forecasts.

Usage

bias_range(lower, upper, range, true_value)
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Arguments
lower vector of length corresponding to the number of central prediction intervals that
holds predictions for the lower bounds of a prediction interval
upper vector of length corresponding to the number of central prediction intervals that
holds predictions for the upper bounds of a prediction interval
range vector of corresponding size with information about the width of the central
prediction interval
true_value a single true value
Details

For quantile forecasts, bias is measured as

B, = (1-2max{i|q:; € QNG < x:})L(xt < gr0.5)+(1—2-min{i|g,; € QuAge; > ¢ })1(Te > qr05),

where (); is the set of quantiles that form the predictive distribution at time ¢. They represent
our belief about what the true value z; will be. For consistency, we define (); such that it always
includes the element ¢, = —oo and ¢,1 = oo. 1() is the indicator function that is 1 if the
condition is satisfied and $0$ otherwise. In clearer terms, B; is defined as the maximum percentile
rank for which the corresponding quantile is still below the true value, if the true value is smaller
than the median of the predictive distribution. If the true value is above the median of the predictive
distribution, then $B_t$ is the minimum percentile rank for which the corresponding quantile is
still larger than the true value. If the true value is exactly the median, both terms cancel out and
B, is zero. For a large enough number of quantiles, the percentile rank will equal the proportion
of predictive samples below the observed true value, and this metric coincides with the one for
continuous forecasts.

Bias can assume values between -1 and 1 and is O ideally.

Value

scalar with the quantile bias for a single quantile prediction

Author(s)

Nikos Bosse <nikosbosse@gmail.com>

See Also

bias_quantile bias_sample

Examples

lower <- c(
6341.000, 6329.500, 6087.014, 5703.500,
5451.000, 5340.500, 4821.996, 4709.000,
4341.500, 4006.250, 1127.000, 705.500
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)

upper <- c(
6341.000, 6352.500, 6594.986, 6978.500,
7231.000, 7341.500, 7860.004, 7973.000,
8340.500, 8675.750, 11555.000, 11976.500
)

range <- c(0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 98)
true_value <- 8062
bias_range(

lower = lower, upper = upper,

range = range, true_value = true_value

)

bias_sample Determines bias of forecasts

Description
Determines bias from predictive Monte-Carlo samples. The function automatically recognises,
whether forecasts are continuous or integer valued and adapts the Bias function accordingly.
Usage

bias_sample(true_values, predictions)

Arguments
true_values A vector with the true observed values of size n
predictions nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predictions can just be a vector of size n.
Details

For continuous forecasts, Bias is measured as

Bt(Ptvxt) =1-2x% (Pt(ﬂft))

where P; is the empirical cumulative distribution function of the prediction for the true value x;.
Computationally, P;(x;) is just calculated as the fraction of predictive samples for z; that are
smaller than x;.

For integer valued forecasts, Bias is measured as

Bi(Py,x¢) =1 — (Pe(xe) + P(xe + 1))
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to adjust for the integer nature of the forecasts.

In both cases, Bias can assume values between -1 and 1 and is O ideally.

Value

vector of length n with the biases of the predictive samples with respect to the true values.

Author(s)

Nikos Bosse <nikosbosse@gmail.com>

References

The integer valued Bias function is discussed in Assessing the performance of real-time epidemic
forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15 Funk S,
Camacho A, Kucharski AJ, Lowe R, Eggo RM, et al. (2019) Assessing the performance of real-
time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra Leone, 2014-15.
PLOS Computational Biology 15(2): e1006785. doi:10.1371/journal.pcbi.1006785

Examples

## integer valued forecasts

true_values <- rpois(30, lambda = 1:30)

predictions <- replicate(200, rpois(n = 30, lambda = 1:30))
bias_sample(true_values, predictions)

## continuous forecasts

true_values <- rnorm(30, mean = 1:30)

predictions <- replicate(200, rnorm(30, mean = 1:30))
bias_sample(true_values, predictions)

brier_score Brier Score

Description

Computes the Brier Score for probabilistic forecasts of binary outcomes.

Usage

brier_score(true_values, predictions)

Arguments

true_values A vector with the true observed values of size n with all values equal to either O
orl

predictions A vector with a predicted probability that true_value = 1.


https://doi.org/10.1371/journal.pcbi.1006785
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Details

The Brier score is a proper score rule that assesses the accuracy of probabilistic binary predictions.
The outcomes can be either O or 1, the predictions must be a probability that the true outcome will
be 1.

The Brier Score is then computed as the mean squared error between the probabilistic prediction
and the true outcome.

n
Brier_Score = i Z(predietiont — outcome; )?
t=1

Value

A numeric value with the Brier Score, i.e. the mean squared error of the given probability forecasts

Examples

true_values <- sample(c(@, 1), size = 30, replace = TRUE)
predictions <- runif(n = 30, min = @, max = 1)

brier_score(true_values, predictions)

check_forecasts Check forecasts

Description

Function to check the input data before running score().

The data should come in one of three different formats:

* A format for binary predictions (see example_binary)

* A sample-based format for discrete or continuous predictions (see example_continuous and
example_integer)

* A quantile-based format (see example_quantile)

Usage

check_forecasts(data)

Arguments

data A data.frame or data.table with the predictions and observations. For scoring
using score(), the following columns need to be present:

e true_value - the true observed values

* prediction - predictions or predictive samples for one true value. (You
only don’t need to provide a prediction column if you want to score quantile
forecasts in a wide range format.)
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Value

check_forecasts

For scoring integer and continuous forecasts a sample column is needed:

* sample - an index to identify the predictive samples in the prediction col-
umn generated by one model for one true value. Only necessary for contin-
uous and integer forecasts, not for binary predictions.

For scoring predictions in a quantile-format forecast you should provide a col-
umn called quantile:

e quantile: quantile to which the prediction corresponds
In addition a model column is suggested and if not present this will be flagged
and added to the input data with all forecasts assigned as an "unspecified model").

You can check the format of your data using check_forecasts() and there
are examples for each format (example_quantile, example_continuous, exam-
ple_integer, and example_binary).

A list with elements that give information about what scoringutils thinks you are trying to do
and potential issues.

target_type the type of the prediction target as inferred from the input: ’binary’, if all values
in true_value are either O or 1 and values in prediction are between O and 1, ’discrete’ if
all true values are integers. and ’continuous’ if not.

prediction_type inferred type of the prediction. ’quantile’, if there is a column called *quan-
tile’, else ’discrete’ if all values in prediction are integer, else ’continuous.

forecast_unit unit of a single forecast, i.e. the grouping that uniquely defines a single fore-
cast. This is assumed to be all present columns apart from the following protected columns:

c("prediction”, "true_value”, "sample”, "quantile”,"range", "boundary”). It is
important that you remove all unnecessary columns before scoring.

rows_per_forecast a data.frame that shows how many rows (usually quantiles or samples
there are available per forecast. If a forecast model has several entries, then there a forecasts
with differing numbers of quantiles / samples.

unique_values A data.frame that shows how many unique values there are present per model
and column in the data. This doesn’t directly show missing values, but rather the maximum
number of unique values across the whole data.

warnings A vector with warnings. These can be ignored if you know what you are doing.
errors A vector with issues that will cause an error when running score().

messages A verbal explanation of the information provided above.

Author(s)

Nikos Bosse <nikosbosse@gmail.com>

See Also

Function to move from sample-based to quantile format: sample_to_quantile()
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Examples

check <- check_forecasts(example_quantile)
print(check)
check_forecasts(example_binary)

correlation Correlation Between Metrics

Description

Calculate the correlation between different metrics for a data.frame of scores as produced by score().

Usage

correlation(scores, metrics = NULL)

Arguments
scores A data.table of scores as produced by score().
metrics A character vector with the metrics to show. If set to NULL (default), all metrics
present in scores will be shown
Value

A data.table with correlations for the different metrics

Examples

scores <- score(example_quantile)
correlation(scores)

crps_sample Ranked Probability Score

Description
Wrapper around the crps_sample() function from the scoringRules package. Can be used for
continuous as well as integer valued forecasts

Usage

crps_sample(true_values, predictions)
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Arguments

true_values

predictions

Value

dss_sample

A vector with the true observed values of size n

nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predictions can just be a vector of size n.

vector with the scoring values

References

Alexander Jordan, Fabian Kriiger, Sebastian Lerch, Evaluating Probabilistic Forecasts with scor-
ingRules, https://www. jstatsoft.org/article/view/v090i12

Examples

true_values <- rpois(30, lambda = 1:30)
predictions <- replicate(200, rpois(n = 30, lambda = 1:30))
crps_sample(true_values, predictions)

dss_sample

Dawid-Sebastiani Score

Description

Wrapper around the dss_sample() function from the scoringRules package.

Usage

dss_sample(true_values, predictions)

Arguments

true_values

predictions

Value

A vector with the true observed values of size n

nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predictions can just be a vector of size n.

vector with scoring values

References

Alexander Jordan, Fabian Kriiger, Sebastian Lerch, Evaluating Probabilistic Forecasts with scor-
ingRules, https://www. jstatsoft.org/article/view/v090i12


https://www.jstatsoft.org/article/view/v090i12
https://www.jstatsoft.org/article/view/v090i12
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Examples

true_values <- rpois(30, lambda = 1:30)
predictions <- replicate(200, rpois(n = 30, lambda = 1:30))
dss_sample(true_values, predictions)

example_binary Binary Forecast Example Data

Description

A data set with binary predictions for COVID-19 cases and deaths constructed from data submitted
to the European Forecast Hub.

Usage

example_binary

Format
A data frame with 346 rows and 10 columns:

location the country for which a prediction was made
location_name name of the country for which a prediction was made
target_end_date the date for which a prediction was made
target_type the target to be predicted (cases or deaths)

true_value true observed values

forecast_date the date on which a prediction was made

model name of the model that generated the forecasts

horizon forecast horizon in weeks

prediction predicted value

Details

Predictions in the data set were constructed based on the continuous example data by looking at the
number of samples below the mean prediction. The outcome was constructed as whether or not the
actually observed value was below or above that mean prediction. This should not be understood as
sound statistical practice, but rather as a practical way to create an example data set.

The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).
Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867bleal52c57e25b¢
# nolint


https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
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example_continuous Continuous Forecast Example Data

Description

A data set with continuous predictions for COVID-19 cases and deaths constructed from data sub-
mitted to the European Forecast Hub.

Usage

example_continuous

Format

A data frame with 13,429 rows and 10 columns:

location the country for which a prediction was made
target_end_date the date for which a prediction was made
target_type the target to be predicted (cases or deaths)

true_value true observed values

location_name name of the country for which a prediction was made
forecast_date the date on which a prediction was made

model name of the model that generated the forecasts

horizon forecast horizon in weeks

prediction predicted value

sample id for the corresponding sample

Details

The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867bleal52c57e25b¢
# nolint


https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
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example_integer Integer Forecast Example Data

Description

A data set with integer predictions for COVID-19 cases and deaths constructed from data submitted
to the European Forecast Hub.

Usage

example_integer

Format
A data frame with 13,429 rows and 10 columns:

location the country for which a prediction was made
target_end_date the date for which a prediction was made
target_type the target to be predicted (cases or deaths)

true_value true observed values

location_name name of the country for which a prediction was made
forecast_date the date on which a prediction was made

model name of the model that generated the forecasts

horizon forecast horizon in weeks

prediction predicted value

sample id for the corresponding sample

Details

The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

example_point Point Forecast Example Data

Description

A data set with predictions for COVID-19 cases and deaths submitted to the European Forecast
Hub. This data set is like the quantile example data, only that the median has been replaced by a
point forecast.

Usage

example_point
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Format
A data frame with

location the country for which a prediction was made
target_end_date the date for which a prediction was made
target_type the target to be predicted (cases or deaths)

true_value true observed values

location_name name of the country for which a prediction was made
forecast_date the date on which a prediction was made

quantile quantile of the corresponding prediction

prediction predicted value

model name of the model that generated the forecasts

horizon forecast horizon in weeks

Details
The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867bleal52c57e25b¢
# nolint

example_quantile Quantile Example Data

Description
A data set with predictions for COVID-19 cases and deaths submitted to the European Forecast
Hub.

Usage

example_quantile

Format
A data frame with
location the country for which a prediction was made
target_end_date the date for which a prediction was made

target_type the target to be predicted (cases or deaths)

true_value true observed values


https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
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location_name name of the country for which a prediction was made
forecast_date the date on which a prediction was made

quantile quantile of the corresponding prediction

prediction predicted value

model name of the model that generated the forecasts

horizon forecast horizon in weeks

Details
The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867bleal52c57e25b¢
# nolint

example_quantile_forecasts_only
Quantile Example Data - Forecasts only

Description

A data set with quantile predictions for COVID-19 cases and deaths submitted to the European
Forecast Hub.

Usage

example_quantile_forecasts_only

Format

A data frame with 7,581 rows and 9 columns:

location the country for which a prediction was made
target_end_date the date for which a prediction was made
target_type the target to be predicted (cases or deaths)
forecast_date the date on which a prediction was made
quantile quantile of the corresponding prediction
prediction predicted value

model name of the model that generated the forecasts

horizon forecast horizon in weeks


https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
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Details
The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867bleal52c57e25b¢
# nolint

example_truth_only Truth data only

Description

A data set with truth values for COVID-19 cases and deaths submitted to the European Forecast
Hub.

Usage

example_truth_only

Format
A data frame with 140 rows and 5 columns:
location the country for which a prediction was made
target_end_date the date for which a prediction was made
target_type the target to be predicted (cases or deaths)

true_value true observed values

location_name name of the country for which a prediction was made

Details
The data was created using the script create-example-data.R in the inst/ folder (or the top level
folder in a compiled package).

Source

https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867bleal52c57e25b¢
# nolint


https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
https://github.com/european-modelling-hubs/covid19-forecast-hub-europe/commit/a42867b1ea152c57e25b04f9faa26cfd4bfd8fa6/
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find_duplicates Find duplicate forecasts

Description
Helper function to identify duplicate forecasts, i.e. instances where there is more than one forecast
for the same prediction target.

Usage

find_duplicates(data, forecast_unit)

Arguments

data A data.frame as used for score()

forecast_unit A character vector with the column names that define the unit of a single fore-
cast. If missing the function tries to infer the unit of a single forecast.
Value

A data.frame with all rows for which a duplicate forecast was found

Examples

example <- rbind(example_quantile, example_quantile[1000:1010])
find_duplicates(example)

interval_score Interval Score

Description

Proper Scoring Rule to score quantile predictions, following Gneiting and Raftery (2007). Smaller
values are better.

The score is computed as

2 2
score = (upper—lower)+— (lower—true_value)=1(true_value < lower)+— (true_value—upper)*1(true_value > upper)
a a

where 1() is the indicator function and indicates how much is outside the prediction interval. « is
the decimal value that indicates how much is outside the prediction interval.

To improve usability, the user is asked to provide an interval range in percentage terms, i.e. in-
terval_range = 90 (percent) for a 90 percent prediction interval. Correspondingly, the user would
have to provide the 5% and 95% quantiles (the corresponding alpha would then be 0.1). No specific
distribution is assumed, but the range has to be symmetric (i.e you can’t use the 0.1 quantile as the
lower bound and the 0.7 quantile as the upper). Non-symmetric quantiles can be scored using the
function quantile_score().
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Usage

interval_score(
true_values,

interval_score

separate_results = FALSE

lower,
upper,
interval_range,
weigh = TRUE,
)
Arguments

true_values
lower
upper

interval_range

weigh

A vector with the true observed values of size n
vector of size n with the prediction for the lower quantile of the given range
vector of size n with the prediction for the upper quantile of the given range

the range of the prediction intervals. i.e. if you’re forecasting the 0.05 and 0.95
quantile, the interval_range would be 90. Can be either a single number or a
vector of size n, if the range changes for different forecasts to be scored. This
corresponds to (100-alpha)/100 in Gneiting and Raftery (2007). Internally, the
range will be transformed to alpha.

if TRUE, weigh the score by alpha / 2, so it can be averaged into an interval
score that, in the limit, corresponds to CRPS. Alpha is the decimal value that
represents how much is outside a central prediction interval (e.g. for a 90 percent
central prediction interval, alpha is 0.1) Default: TRUE.

separate_results

Value

if TRUE (default is FALSE), then the separate parts of the interval score (dispersion
penalty, penalties for over- and under-prediction get returned as separate ele-
ments of alist). If you want a data. frame instead, simply call as.data. frame()
on the output.

vector with the scoring values, or a list with separate entries if separate_results is TRUE.

References

Strictly Proper Scoring Rules, Prediction,and Estimation, Tilmann Gneiting and Adrian E. Raftery,
2007, Journal of the American Statistical Association, Volume 102, 2007 - Issue 477

Evaluating epidemic forecasts in an interval format, Johannes Bracher, Evan L. Ray, Tilmann
Gneiting and Nicholas G. Reich, https://journals.plos.org/ploscompbiol/article?id=10.
1371/journal.pcbi. 1008618 # nolint

Examples

true_values <- rnorm(30, mean = 1:30)
interval_range <- rep(90, 30)
alpha <- (100 - interval_range) / 100


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618
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lower <- gnorm(alpha / 2, rnorm(30, mean = 1:30))
upper <- gnorm((1 - alpha / 2), rnorm(30, mean = 1:30))

interval_score(
true_values = true_values,
lower = lower,
upper = upper,
interval_range = interval_range

)

# gives a warning, as the interval_range should likely be 50 instead of 0.5
interval_score(true_value = 4, upper = 2, lower = 8, interval_range = 0.5)

# example with missing values and separate results
interval_score(

true_values = c(true_values, NA),

lower = c(lower, NA),

upper = c(NA, upper),

separate_results = TRUE,

interval_range = 90

logs_binary Log Score for Binary outcomes

Description

Computes the Log Score for probabilistic forecasts of binary outcomes.

Usage

logs_binary(true_values, predictions)

Arguments
true_values A vector with the true observed values of size n with all values equal to either 0
orl
predictions A vector with a predicted probability that true_value = 1.
Details

The Log Score is a proper score rule suited to assessing the accuracy of probabilistic binary predic-
tions. The outcomes can be either O or 1, the predictions must be a probability that the true outcome
will be 1.

The Log Score is then computed as the negative logarithm of the probability assigned to the true
outcome. Reporting the negative logarithm means that smaller values are better.
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Value

A numeric value with the Log Score, i.e. the mean squared error of the given probability forecasts

Examples

true_values <- sample(c(@, 1), size = 30, replace = TRUE)
predictions <- runif(n = 30, min = @, max = 1)
logs_binary(true_values, predictions)

logs_sample Logarithmic score

Description

Wrapper around the logs_sample() function from the scoringRules package. Used to score con-
tinuous predictions. While the Log Score is in theory also applicable to integer forecasts, the prob-
lem lies in the implementation: The Log Score needs a kernel density estimation, which is not well
defined with integer-valued Monte Carlo Samples. The Log Score can be used for specific integer
valued probability distributions. See the scoringRules package for more details.

Usage

logs_sample(true_values, predictions)

Arguments
true_values A vector with the true observed values of size n
predictions nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predictions can just be a vector of size n.
Value

vector with the scoring values

References

Alexander Jordan, Fabian Kriiger, Sebastian Lerch, Evaluating Probabilistic Forecasts with scor-
ingRules, https://www. jstatsoft.org/article/view/v090i12

Examples

true_values <- rpois(30, lambda = 1:30)
predictions <- replicate(200, rpois(n = 30, lambda = 1:30))
logs_sample(true_values, predictions)


https://www.jstatsoft.org/article/view/v090i12
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log_shift Log transformation with an additive shift

Description

Function that shifts a value by some offset and then applies the natural logarithm to it.

Usage

log_shift(x, offset = @, base = exp(1))

Arguments
X vector of input values to be transformed
offset number to add to the input value before taking the natural logarithm
base a positive or complex number: the base with respect to which logarithms are
computed. Defaults to e = exp(1).
Details

The output is computed as log(x + offset)

Value

A numeric vector with transformed values

References

Transformation of forecasts for evaluating predictive performance in an epidemiological context
Nikos I. Bosse, Sam Abbott, Anne Cori, Edwin van Leeuwen, Johannes Bracher, Sebastian Funk
medRxiv 2023.01.23.23284722 doi:10.1101/2023.01.23.23284722 https://www.medrxiv.org/
content/10.1101/2023.01.23.23284722v1 # nolint

Examples

log_shift(1:10)
log_shift(0:9, offset = 1)

transform_forecasts(
example_quantile[true_value > @, 1,
fun = log_shift,
offset = 1

)


https://doi.org/10.1101/2023.01.23.23284722
https://www.medrxiv.org/content/10.1101/2023.01.23.23284722v1
https://www.medrxiv.org/content/10.1101/2023.01.23.23284722v1
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mad_sample Determine dispersion of a probabilistic forecast

Description

Determine dispersion of a probabilistic forecast

Usage

mad_sample(predictions)

Arguments
predictions nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predictions can just be a vector of size n.
Details

Sharpness is the ability of the model to generate predictions within a narrow range and dispersion is
the lack thereof. Itis a data-independent measure, and is purely a feature of the forecasts themselves.

Dispersion of predictive samples corresponding to one single true value is measured as the nor-
malised median of the absolute deviation from the median of the predictive samples. For details,
see mad() and the explanations given in Funk et al. (2019)

Value

vector with dispersion values

References

Funk S, Camacho A, Kucharski AJ, Lowe R, Eggo RM, Edmunds WJ (2019) Assessing the perfor-
mance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra
Leone, 2014-15. PLoS Comput Biol 15(2): e1006785. doi:10.1371/journal.pcbi.1006785

Examples

predictions <- replicate(200, rpois(n = 30, lambda = 1:30))
mad_sample(predictions)


https://doi.org/10.1371/journal.pcbi.1006785
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make_NA

Make Rows NA in Data for Plotting

Description

Filters the data and turns values into NA before the data gets passed to plot_predictions(). The
reason to do this is to this is that it allows to *filter’ prediction and truth data separately. Any value
that is NA will then be removed in the subsequent call to plot_predictions().

Usage

make_NA(data

make_na(data

Arguments

data

what

Value

A data.table

NULL, what = c("truth”, "forecast”, "both"), ...)

NULL, what = c("truth”, "forecast”, "both"), ...)

A data.frame or data.table with the predictions and observations. For scoring
using score(), the following columns need to be present:

e true_value - the true observed values

* prediction - predictions or predictive samples for one true value. (You
only don’t need to provide a prediction column if you want to score quantile
forecasts in a wide range format.)

For scoring integer and continuous forecasts a sample column is needed:

* sample - an index to identify the predictive samples in the prediction col-
umn generated by one model for one true value. Only necessary for contin-
uous and integer forecasts, not for binary predictions.

For scoring predictions in a quantile-format forecast you should provide a col-
umn called quantile:

* quantile: quantile to which the prediction corresponds

In addition a model column is suggested and if not present this will be flagged
and added to the input data with all forecasts assigned as an "unspecified model").
You can check the format of your data using check_forecasts() and there
are examples for each format (example_quantile, example_continuous, exam-
ple_integer, and example_binary).

character vector that determines which values should be turned into NA. If what
= "truth"”, values in the column ’true_value’ will be turned into NA. If what =
"forecast”, values in the column ’prediction’ will be turned into NA. If what =
"both"”, values in both column will be turned into NA.

logical statements used to filter the data
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Examples

make_NA (
example_continuous,
what = "truth”,
target_end_date >= "2021-07-22",
target_end_date < "2021-05-01"
)

merge_pred_and_obs Merge Forecast Data And Observations

Description

The function more or less provides a wrapper around merge that aims to handle the merging well if
additional columns are present in one or both data sets. If in doubt, you should probably merge the
data sets manually.

Usage

merge_pred_and_obs(
forecasts,
observations,
join = c("left"”, "full", "right"),
by = NULL
)

Arguments

forecasts data.frame with the forecast data (as can be passed to score()).
observations data.frame with the observations

join character, one of c("left”, "full”, "right"). Determines the type of the
join. Usually, a left join is appropriate, but sometimes you may want to do a full
join to keep dates for which there is a forecast, but no ground truth data.

by character vector that denotes the columns by which to merge. Any value that is
not a column in observations will be removed.

Value

a data.frame with forecasts and observations

Examples

forecasts <- example_quantile_forecasts_only
observations <- example_truth_only
merge_pred_and_obs(forecasts, observations)
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metrics Summary information for selected metrics

Description

A data set with summary information on selected metrics implemented in scoringutils

Usage

metrics

Format

An object of class data. table (inherits from data. frame) with 22 rows and 8 columns.

Details

The data was created using the script create-metric-tables.R in the inst/ folder (or the top level folder
in a compiled package).

pairwise_comparison Do Pairwise Comparisons of Scores

Description

Compute relative scores between different models making pairwise comparisons. Pairwise compar-
isons are a sort of pairwise tournament where all combinations of two models are compared against
each other based on the overlapping set of available forecasts common to both models. Internally,
a ratio of the mean scores of both models is computed. The relative score of a model is then the
geometric mean of all mean score ratios which involve that model. When a baseline is provided,
then that baseline is excluded from the relative scores for individual models (which therefore differ
slightly from relative scores without a baseline) and all relative scores are scaled by (i.e. divided
by) the relative score of the baseline model. Usually, the function input should be unsummarised
scores as produced by score(). Note that the function internally infers the unit of a single forecast
by determining all columns in the input that do not correspond to metrics computed by score().
Adding unrelated columns will change results in an unpredictable way.

The code for the pairwise comparisons is inspired by an implementation by Johannes Bracher. The
implementation of the permutation test follows the function permutationTest from the surveillance
package by Michael Hohle, Andrea Riebler and Michaela Paul.
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Usage

pairwise_comparison(
scores,
by = "model”,
metric = "auto”,
baseline = NULL,

Arguments

scores A data.table of scores as produced by score().

by character vector with names of columns present in the input data.frame. by
determines how pairwise comparisons will be computed. You will get a relative
skill score for every grouping level determined in by. If, for example, by =
c("model”, "location™). Then you will get a separate relative skill score for
every model in every location. Internally, the data.frame will be split according
by (but removing "model" before splitting) and the pairwise comparisons will
be computed separately for the split data.frames.

metric A character vector of length one with the metric to do the comparison on. The

non

default is "auto", meaning that either "interval_score", "crps", or "brier_score"
will be selected where available. See available_metrics() for available met-
rics.

baseline character vector of length one that denotes the baseline model against which to
compare other models.

additional arguments for the comparison between two models. See compare_two_models()
for more information.

Value

A ggplot2 object with a coloured table of summarised scores

Author(s)

Nikos Bosse <nikosbosse@gmail.com>

Johannes Bracher, <johannes.bracher@kit.edu>

Examples

scores <- score(example_quantile)

pairwise <- pairwise_comparison(scores, by = "target_type")
library(ggplot2)
plot_pairwise_comparison(pairwise, type = "mean_scores_ratio”) +

facet_wrap(~target_type)
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pit Probability Integral Transformation (data.frame Format)

Description

Wrapper around pit() for use in data.frames

Usage

pit(data, by, n_replicates = 100)

Arguments
data a data.frame with the following columns: true_value, prediction, sample.
by Character vector with the columns according to which the PIT values shall

be grouped. If you e.g. have the columns 'model’ and ’location’ in the data
and want to have a PIT histogram for every model and location, specify by =
c("model”, "location").

n_replicates the number of draws for the randomised PIT for integer predictions.

Details

see pit()

Value

a data.table with PIT values according to the grouping specified in by

References

Sebastian Funk, Anton Camacho, Adam J. Kucharski, Rachel Lowe, Rosalind M. Eggo, W. John
Edmunds (2019) Assessing the performance of real-time epidemic forecasts: A case study of Ebola
in the Western Area region of Sierra Leone, 2014-15, doi: 10.1371/journal.pcbi. 1006785

Examples

result <- pit(example_continuous, by = "model"”)
plot_pit(result)

# example with quantile data
result <- pit(example_quantile, by = "model”)
plot_pit(result)


https://doi.org/10.1371/journal.pcbi.1006785
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pit_sample Probability Integral Transformation (sample-based version)

Description

Uses a Probability Integral Transformation (PIT) (or a randomised PIT for integer forecasts) to
assess the calibration of predictive Monte Carlo samples. Returns a p-values resulting from an
Anderson-Darling test for uniformity of the (randomised) PIT as well as a PIT histogram if speci-
fied.

Usage

pit_sample(true_values, predictions, n_replicates = 100)

Arguments
true_values A vector with the true observed values of size n
predictions nxN matrix of predictive samples, n (number of rows) being the number of data

points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predictions can just be a vector of size n.

n_replicates the number of draws for the randomised PIT for integer predictions.

Details

Calibration or reliability of forecasts is the ability of a model to correctly identify its own uncertainty
in making predictions. In a model with perfect calibration, the observed data at each time point look
as if they came from the predictive probability distribution at that time.

Equivalently, one can inspect the probability integral transform of the predictive distribution at time
t,

Uy = Ft(l't)

where x4 is the observed data point at time ¢ in ¢4, . .., t,, n being the number of forecasts, and F}
is the (continuous) predictive cumulative probability distribution at time t. If the true probability
distribution of outcomes at time t is G; then the forecasts F} are said to be ideal if F; = G, at all
times t. In that case, the probabilities u; are distributed uniformly.

In the case of discrete outcomes such as incidence counts, the PIT is no longer uniform even when

forecasts are ideal. In that case a randomised PIT can be used instead:

ug = Py(kt) + v * (Pe(ky) — Pe(ke — 1))

where k; is the observed count, P;(x) is the predictive cumulative probability of observing inci-
dence k at time t, P,(—1) = 0 by definition and v is standard uniform and independent of k. If P,
is the true cumulative probability distribution, then w; is standard uniform.
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The function checks whether integer or continuous forecasts were provided. It then applies the
(randomised) probability integral and tests the values u; for uniformity using the Anderson-Darling
test.

As a rule of thumb, there is no evidence to suggest a forecasting model is miscalibrated if the p-
value found was greater than a threshold of p >= 0.1, some evidence that it was miscalibrated if
0.01 < p <0.1, and good evidence that it was miscalibrated if p <= 0.01. However, the AD-p-values
may be overly strict and there actual usefulness may be questionable. In this context it should be
noted, though, that uniformity of the PIT is a necessary but not sufficient condition of calibration.

Value

A vector with PIT-values. For continuous forecasts, the vector will correspond to the length of
true_values. For integer forecasts, a randomised PIT will be returned of length length(true_values)
*n_replicates

References

Sebastian Funk, Anton Camacho, Adam J. Kucharski, Rachel Lowe, Rosalind M. Eggo, W. John
Edmunds (2019) Assessing the performance of real-time epidemic forecasts: A case study of Ebola
in the Western Area region of Sierra Leone, 2014-15, doi:10.1371/journal.pcbi.1006785

See Also

pit()

Examples

## continuous predictions

true_values <- rnorm(20, mean = 1:20)

predictions <- replicate(100, rnorm(n = 20, mean = 1:20))
pit <- pit_sample(true_values, predictions)

plot_pit(pit)

## integer predictions

true_values <- rpois(50, lambda = 1:50)

predictions <- replicate(2000, rpois(n = 50, lambda = 1:50))
pit <- pit_sample(true_values, predictions, n_replicates = 30)
plot_pit(pit)

plot_avail_forecasts Visualise Where Forecasts Are Available

Description

Visualise Where Forecasts Are Available


https://doi.org/10.1371/journal.pcbi.1006785
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plot_correlation

Usage

plot_avail_forecasts(
avail_forecasts,
y = "model”,
x = "forecast_date”,
make_x_factor = TRUE,
show_numbers = TRUE

Arguments

avail_forecasts

data.frame with a column called Number forecasts as produced by avail_forecasts()

y character vector of length one that denotes the name of the column to appear on
the y-axis of the plot. Default is "model".

X character vector of length one that denotes the name of the column to appear on
the x-axis of the plot. Default is "forecast_date".

make_x_factor logical (default is TRUE). Whether or not to convert the variable on the x-axis
to a factor. This has an effect e.g. if dates are shown on the x-axis.

show_numbers logical (default is TRUE) that indicates whether or not to show the actual count
numbers on the plot

Value

ggplot object with a plot of interval coverage

Examples

library(ggplot2)
avail_forecasts <- avail_forecasts(
example_quantile, by = c("model”, "target_type"”, "target_end_date")
)
plot_avail_forecasts(
avail_forecasts, x = "target_end_date"”, show_numbers = FALSE
) +
facet_wrap("target_type")

plot_correlation Plot Correlation Between Metrics

Description

Plots a heatmap of correlations between different metrics

Usage

plot_correlation(correlations)
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Arguments

correlations A data.table of correlations between scores as produced by correlation().

Value

A ggplot2 object showing a coloured matrix of correlations between metrics

Examples

scores <- score(example_quantile)
correlations <- correlation(
summarise_scores(scores)

)

plot_correlation(correlations)

plot_heatmap Create a Heatmap of a Scoring Metric

Description

This function can be used to create a heatmap of one metric across different groups, e.g. the interval
score obtained by several forecasting models in different locations.

Usage
plot_heatmap(scores, y = "model”, x, metric)
Arguments
scores A data.frame of scores based on quantile forecasts as produced by score().
y The variable from the scores you want to show on the y-Axis. The default for
this is "model"
X The variable from the scores you want to show on the x-Axis. This could be
something like "horizon", or "location"
metric the metric that determines the value and colour shown in the tiles of the heatmap
Value

A ggplot2 object showing a heatmap of the desired metric

Examples

scores <- score(example_quantile)
scores <- summarise_scores(scores, by = c("model”, "target_type”, "range"))

plot_heatmap(scores, x = "target_type"”, metric = "bias")
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plot_interval_coverage
Plot Interval Coverage

Description

Plot interval coverage

Usage
plot_interval_coverage(scores, colour = "model"”)
Arguments
scores A data.frame of scores based on quantile forecasts as produced by score() or
summarise_scores(). Note that "range" must be included in the by argument
when running summarise_scores()
colour According to which variable shall the graphs be coloured? Default is "model".
Value

ggplot object with a plot of interval coverage

Examples

scores <- score(example_quantile)
scores <- summarise_scores(scores, by = c("model”, "range"))
plot_interval_coverage(scores)

plot_pairwise_comparison
Plot Heatmap of Pairwise Comparisons

Description

Creates a heatmap of the ratios or pvalues from a pairwise comparison between models

Usage

plot_pairwise_comparison(
comparison_result,
type = c("mean_scores_ratio”, "pval")

)



plot_pit 39

Arguments

comparison_result
A data.frame as produced by pairwise_comparison()

type character vector of length one that is either "mean_scores_ratio" or "pval". This
denotes whether to visualise the ratio or the p-value of the pairwise comparison.
Default is "mean_scores_ratio".

Examples
library(ggplot2)
scores <- score(example_quantile)
pairwise <- pairwise_comparison(scores, by = "target_type")
plot_pairwise_comparison(pairwise, type = "mean_scores_ratio”) +

facet_wrap(~target_type)

plot_pit PIT Histogram

Description

Make a simple histogram of the probability integral transformed values to visually check whether a
uniform distribution seems likely.

Usage

plot_pit(pit, num_bins = "auto”, breaks = NULL)

Arguments
pit either a vector with the PIT values of size n, or a data.frame as produced by
pit()
num_bins the number of bins in the PIT histogram, default is "auto". When num_bins ==
"auto”, plot_pit () will either display 10 bins, or it will display a bin for each
available quantile in case you passed in data in a quantile-based format. You
can control the number of bins by supplying a number. This is fine for sample-
based pit histograms, but may fail for quantile-based formats. In this case it is
preferred to supply explicit breaks points using the breaks argument.
breaks numeric vector with the break points for the bins in the PIT histogram. This is
preferred when creating a PIT histogram based on quantile-based data. Default
is NULL and breaks will be determined by num_bins.
Value

vector with the scoring values
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Examples

# PIT histogram in vector based format

true_values <- rnorm(30, mean = 1:30)

predictions <- replicate(200, rnorm(n = 30, mean = 1:30))
pit <- pit_sample(true_values, predictions)

plot_pit(pit)

# quantile-based pit
pit <- pit(example_quantile,by = "model”)
plot_pit(pit, breaks = seq(@.1, 1, 0.1))

# sample-based pit
pit <- pit(example_integer,by = "model”)
plot_pit(pit)

plot_predictions Plot Predictions vs True Values

Description

Make a plot of observed and predicted values

Usage

plot_predictions(data, by = NULL, x = "date"”, range = c(@, 50, 90))

Arguments
data a data.frame that follows the same specifications outlined in score(). To cus-
tomise your plotting, you can filter your data using the function make_NA().
by character vector with column names that denote categories by which the plot
should be stratified. If for example you want to have a facetted plot, this should
be a character vector with the columns used in facetting (note that the facetting
still needs to be done outside of the function call)
X character vector of length one that denotes the name of the variable
range numeric vector indicating the interval ranges to plot. If 0 is included in range,
the median prediction will be shown.
Value

ggplot object with a plot of true vs predicted values
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Examples

library(ggplot2)
library(magrittr)

example_continuous %>%
make_NA (
what = "truth”,
target_end_date >= "2021-07-22",
target_end_date < "2021-05-01"

) %%
make_NA (
what = "forecast”,
model != "EuroCOVIDhub-ensemble”,
forecast_date != "2021-06-07"
) 5%
plot_predictions (
x = "target_end_date”,

by = c("target_type", "location"),

range = c(0, 50, 90, 95)
) +
facet_wrap(~ location + target_type, scales = "free_y") +
aes(fill = model, color = model)

example_continuous %>%
make_NA (
what = "truth”,
target_end_date >= "2021-07-22",
target_end_date < "2021-05-01"
) %%
make_NA (
what = "forecast”,
forecast_date != "2021-06-07"
) 5%
plot_predictions (
x = "target_end_date”,
by = c("target_type", "location"),
range = c(0)
) +
facet_wrap(~ location + target_type, scales = "free_y") +
aes(fill = model, color = model)
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plot_quantile_coverage
Plot Quantile Coverage

Description

Plot quantile coverage
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Usage
plot_quantile_coverage(scores, colour = "model")
Arguments
scores A data.frame of scores based on quantile forecasts as produced by score() or
summarise_scores(). Note that "range" must be included in the by argument
when running summarise_scores()
colour According to which variable shall the graphs be coloured? Default is "model".
Value

ggplot object with a plot of interval coverage

Examples

scores <- score(example_quantile)
scores <- summarise_scores(scores, by = c("model”, "quantile"))
plot_quantile_coverage(scores)

plot_ranges Plot Metrics by Range of the Prediction Interval

Description

Visualise the metrics by range, e.g. if you are interested how different interval ranges contribute to
the overall interval score, or how sharpness / dispersion changes by range.

Usage
plot_ranges(scores, y = "interval_score”, x = "model”, colour = "range")
Arguments
scores A data.frame of scores based on quantile forecasts as produced by score() or
summarise_scores(). Note that "range" must be included in the by argument
when running summarise_scores()
y The variable from the scores you want to show on the y-Axis. This could be
something like "interval_score" (the default) or "dispersion"
X The variable from the scores you want to show on the x-Axis. Usually this will
be "model"
colour Character vector of length one used to determine a variable for colouring dots.
The Default is "range".
Value

A ggplot2 object showing a contributions from the three components of the weighted interval score
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Examples

library(ggplot2)
scores <- score(example_quantile)
scores <- summarise_scores(scores, by = c("model”, "target_type"”, "range"))

plot_ranges(scores, x = "model”) +
facet_wrap(~target_type, scales = "free")

# visualise dispersion instead of interval score
plot_ranges(scores, y = "dispersion”, x = "model”) +
facet_wrap(~target_type)

plot_score_table Plot Coloured Score Table

Description

Plots a coloured table of summarised scores obtained using score().

Usage

plot_score_table(scores, y = "model”, by = NULL, metrics = NULL)

Arguments
scores A data.table of scores as produced by score().
y the variable to be shown on the y-axis. Instead of a single character string, you
can also specify a vector with column names, e.g. y = c("model”, "location”).
These column names will be concatenated to create a unique row identifier (e.g.
"modell_locationl").
by A character vector that determines how the colour shading for the plot gets com-
puted. By default (NULL), shading will be determined per metric, but you can
provide additional column names (see examples).
metrics A character vector with the metrics to show. If set to NULL (default), all metrics
present in scores will be shown.
Value

A ggplot2 object with a coloured table of summarised scores
Examples

library(ggplot2)
library(magrittr) # pipe operator

scores <- score(example_quantile) %>%
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summarise_scores(by = c("model”, "target_type")) %>%
summarise_scores(fun = signif, digits = 2)

plot_score_table(scores, y = "model”, by = "target_type") +
facet_wrap(~target_type, ncol = 1)

# can also put target description on the y-axis
plot_score_table(scores,
y = c("model”, "target_type"),
by = "target_type")

plot_wis Plot Contributions to the Weighted Interval Score

Description

Visualise the components of the weighted interval score: penalties for over-prediction, under-
prediction and for high dispersion (lack of sharpness)

Usage

plot_wis(scores, x = "model”, relative_contributions = FALSE, flip = FALSE)

Arguments
scores A data.frame of scores based on quantile forecasts as produced by score() and
summarised using summarise_scores()
X The variable from the scores you want to show on the x-Axis. Usually this will

be "model".
relative_contributions

show relative contributions instead of absolute contributions. Default is FALSE
and this functionality is not available yet.

flip boolean (default is FALSE), whether or not to flip the axes.

Value

A ggplot2 object showing a contributions from the three components of the weighted interval score

References

Bracher J, Ray E, Gneiting T, Reich, N (2020) Evaluating epidemic forecasts in an interval format.
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi. 1008618


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618

print.scoringutils_check

Examples
library(ggplot2)
scores <- score(example_quantile)
scores <- summarise_scores(scores, by = c("model”, "target_type"))

plot_wis(scores,

X = "model”,
relative_contributions = TRUE
) +

facet_wrap(~target_type)
plot_wis(scores,

X = "model”,
relative_contributions = FALSE
) +
facet_wrap(~target_type, scales = "free_x")

print.scoringutils_check
Print output from check_forecasts()

Description

Helper function that prints the output generated by check_forecasts()

Usage
## S3 method for class 'scoringutils_check'
print(x, ...)
Arguments
X An object of class "scoringutils_check’ as produced by check_forecasts()
additional arguments (not used here)
Examples

check <- check_forecasts(example_quantile)
print(check)
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quantile_score Quantile Score

Description

Proper Scoring Rule to score quantile predictions. Smaller values are better. The quantile score
is closely related to the Interval score (see interval_score()) and is the quantile equivalent that
works with single quantiles instead of central prediction intervals.

Usage

quantile_score(true_values, predictions, quantiles, weigh = TRUE)

Arguments
true_values A vector with the true observed values of size n
predictions nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predictions can just be a vector of size n.
quantiles vector of size n with the quantile values of the corresponding predictions.
weigh if TRUE, weigh the score by alpha /2, so it can be averaged into an interval score
that, in the limit, corresponds to CRPS. Alpha is the value that corresponds to
the (alpha/2) or (1 - alpha/2) quantiles provided and will be computed from
the quantile. Alpha is the decimal value that represents how much is outside
a central prediction interval (E.g. for a 90 percent central prediction interval,
alpha is 0.1). Default: TRUE.
Value

vector with the scoring values

References

Strictly Proper Scoring Rules, Prediction,and Estimation, Tilmann Gneiting and Adrian E. Raftery,
2007, Journal of the American Statistical Association, Volume 102, 2007 - Issue 477

Evaluating epidemic forecasts in an interval format, Johannes Bracher, Evan L. Ray, Tilmann
Gneiting and Nicholas G. Reich, https://journals.plos.org/ploscompbiol/article?id=10.
1371/journal.pcbi. 1008618

Examples

true_values <- rnorm(10, mean = 1:10)
alpha <- 0.5

lower <- gnorm(alpha / 2, rnorm(1@, mean = 1:10))
upper <- gnorm((1 - alpha / 2), rnorm(10@, mean = 1:10))


https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008618
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gs_lower <- quantile_score(true_values,
predictions = lower,
quantiles = alpha / 2

)

gs_upper <- quantile_score(true_values,
predictions = upper,
quantiles = 1 - alpha / 2

)

interval_score <- (gs_lower + qgs_upper) / 2

sample_to_quantile Change Data from a Sample Based Format to a Quantile Format

Description

Transform data from a format that is based on predictive samples to a format based on plain quan-
tiles.

Usage

sample_to_quantile(data, quantiles = c(0.05, ©.25, 9.5, 0.75, 0.95), type = 7)

Arguments
data a data.frame with samples
quantiles a numeric vector of quantiles to extract
type type argument passed down to the quantile function. For more information, see
quantile()
Value

a data.frame in a long interval range format

Examples

sample_to_quantile(example_integer)
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score Evaluate forecasts

Description

This function allows automatic scoring of forecasts using a range of metrics. For most users it
will be the workhorse for scoring forecasts as it wraps the lower level functions package functions.
However, these functions are also available if you wish to make use of them independently.

A range of forecasts formats are supported, including quantile-based, sample-based, binary fore-
casts. Prior to scoring, users may wish to make use of check_forecasts() to ensure that the input
data is in a supported format though this will also be run internally by score(). Examples for each
format are also provided (see the documentation for data below or in check_forecasts()).

Each format has a set of required columns (see below). Additional columns may be present to
indicate a grouping of forecasts. For example, we could have forecasts made by different models
in various locations at different time points, each for several weeks into the future. It is important,
that there are only columns present which are relevant in order to group forecasts. A combination
of different columns should uniquely define the unit of a single forecast, meaning that a single
forecast is defined by the values in the other columns. Adding additional unrelated columns may
alter results.

To obtain a quick overview of the currently supported evaluation metrics, have a look at the metrics
data included in the package. The column metrics$Name gives an overview of all available metric
names that can be computed. If interested in an unsupported metric please open a feature request or
consider contributing a pull request.

For additional help and examples, check out the Getting Started Vignette as well as the paper Eval-
uating Forecasts with scoringutils in R.

Usage
score(data, metrics = NULL, ...)
Arguments
data A data.frame or data.table with the predictions and observations. For scoring

using score(), the following columns need to be present:

e true_value - the true observed values

e prediction - predictions or predictive samples for one true value. (You
only don’t need to provide a prediction column if you want to score quantile
forecasts in a wide range format.)

For scoring integer and continuous forecasts a sample column is needed:

* sample - an index to identify the predictive samples in the prediction col-
umn generated by one model for one true value. Only necessary for contin-
uous and integer forecasts, not for binary predictions.

For scoring predictions in a quantile-format forecast you should provide a col-
umn called quantile:


https://github.com/epiforecasts/scoringutils/issues
https://epiforecasts.io/scoringutils/articles/scoringutils.html
https://arxiv.org/abs/2205.07090
https://arxiv.org/abs/2205.07090
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e quantile: quantile to which the prediction corresponds

In addition a model column is suggested and if not present this will be flagged
and added to the input data with all forecasts assigned as an "unspecified model").
You can check the format of your data using check_forecasts() and there
are examples for each format (example_quantile, example_continuous, exam-
ple_integer, and example_binary).

metrics the metrics you want to have in the output. If NULL (the default), all available
metrics will be computed. For a list of available metrics see available_metrics(),
or check the metrics data set.

additional parameters passed down to score_quantile() (internal function
used for scoring forecasts in a quantile-based format).

Value

A data.table with unsummarised scores. There will be one score per quantile or sample, which is
usually not desired, so you should almost always run summarise_scores() on the unsummarised
scores.

Author(s)

Nikos Bosse <nikosbosse@gmail.com>

References

Funk S, Camacho A, Kucharski AJ, Lowe R, Eggo RM, Edmunds WJ (2019) Assessing the perfor-
mance of real-time epidemic forecasts: A case study of Ebola in the Western Area region of Sierra
Leone, 2014-15. PLoS Comput Biol 15(2): e1006785. doi:10.1371/journal.pcbi.1006785

Examples

library(magrittr) # pipe operator

check_forecasts(example_quantile)
score(example_quantile) %>%
add_coverage(by = c("model”, "target_type")) %>%
summarise_scores(by = c("model”, "target_type"))

# set forecast unit manually (to avoid issues with scoringutils trying to
# determine the forecast unit automatically), check forecasts before scoring
example_quantile %>%

set_forecast_unit(

c("location”, "target_end_date"”, "target_type"”, "horizon"”, "model")
) %%
check_forecasts() %>%
score()

# forecast formats with different metrics
## Not run:
score(example_binary)


https://doi.org/10.1371/journal.pcbi.1006785
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set_forecast_unit

score(example_quantile)
score(example_integer)
score(example_continuous)

## End(Not run)

# score point forecasts (marked by 'NA' in the quantile column)
score(example_point) %>%

summarise_scores(by = "model”, na.rm = TRUE)
set_forecast_unit Set unit of a single forecast manually
Description

Helper function to set the unit of a single forecast (i.e. the combination of columns that uniquely de-

fine a single forecast) manually. This simple function keeps the columns specified in forecast_unit
(plus additional protected columns, e.g. for true values, predictions or quantile levels) and removes

duplicate rows. If not done manually, scoringutils attempts to determine the unit of a single fore-

cast automatically by simply assuming that all column names are relevant to determine the forecast
unit. This may lead to unexpected behaviour, so setting the forecast unit explicitly can help make the
code easier to debug and easier to read. When used as part of a workflow, set_forecast_unit()

can be directly piped into check_forecasts() to check everything is in order.

Usage

set_forecast_unit(data, forecast_unit)

Arguments

data A data.frame or data.table with the predictions and observations. For scoring
using score(), the following columns need to be present:
* true_value - the true observed values

e prediction - predictions or predictive samples for one true value. (You
only don’t need to provide a prediction column if you want to score quantile
forecasts in a wide range format.)

For scoring integer and continuous forecasts a sample column is needed:

* sample - an index to identify the predictive samples in the prediction col-
umn generated by one model for one true value. Only necessary for contin-
uous and integer forecasts, not for binary predictions.

For scoring predictions in a quantile-format forecast you should provide a col-
umn called quantile:

* quantile: quantile to which the prediction corresponds
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In addition a model column is suggested and if not present this will be flagged
and added to the input data with all forecasts assigned as an "unspecified model").

You can check the format of your data using check_forecasts() and there
are examples for each format (example_quantile, example_continuous, exam-
ple_integer, and example_binary).

Character vector with the names of the columns that uniquely identify a single
forecast.

A data.table with only those columns kept that are relevant to scoring or denote the unit of a single
forecast as specified by the user.

Examples

set_forecast_unit(
example_quantile,

c("location”,

)

"target_end_date", "target_type"”, "horizon”, "model")

se_mean_sample

Squared Error of the Mean (Sample-based Version)

Description

Squared error of the mean calculated as

Usage

mean(true_value — prediction)?

se_mean_sample(true_values, predictions)

Arguments

true_values

predictions

Value

A vector with the true observed values of size n

nxN matrix of predictive samples, n (number of rows) being the number of data
points and N (number of columns) the number of Monte Carlo samples. Alter-
natively, predictions can just be a vector of size n.

vector with the scoring values

See Also

squared_error()
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Examples

true_values <- rnorm(30, mean = 1:30)
predicted_values <- rnorm(30, mean = 1:30)
se_mean_sample(true_values, predicted_values)

summarise_scores

squared_error Squared Error

Description

Squared Error SE calculated as
(true_values — predicted_values)2

Usage

squared_error(true_values, predictions)

Arguments
true_values A vector with the true observed values of size n
predictions A vector with predicted values of size n

Value

vector with the scoring values

Examples

true_values <- rnorm(30, mean = 1:30)
predicted_values <- rnorm(30, mean = 1:30)
squared_error(true_values, predicted_values)

summarise_scores Summarise scores as produced by score()

Description

Summarise scores as produced by score()
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summarise_scores(

scores,
by = NULL,

across = NULL,

fun = mean,

relative_skill = FALSE,
relative_skill_metric = "auto",
metric = deprecated(),

baseline = NULL,

summarize_scores(

scores,
by = NULL,

across = NULL,

fun = mean,

relative_skill = FALSE,
relative_skill_metric = "auto",
metric = deprecated(),

baseline = NULL,

Arguments

scores

by

across

fun

relative_skill

A data.table of scores as produced by score().

character vector with column names to summarise scores by. Default is NULL,
meaning that the only summary that takes is place is summarising over samples
or quantiles (in case of quantile-based forecasts), such that there is one score
per forecast as defined by the unit of a single forecast (rather than one score for
every sample or quantile). The unit of a single forecast is determined by the
columns present in the input data that do not correspond to a metric produced
by score(), which indicate indicate a grouping of forecasts (for example there
may be one forecast per day, location and model). Adding additional, unrelated,
columns may alter results in an unpredictable way.

character vector with column names from the vector of variables that define the
unit of a single forecast (see above) to summarise scores across (meaning that
the specified columns will be dropped). This is an alternative to specifying by
directly. If NULL (default), then by will be used or inferred internally if also not
specified. Only one of across and by may be used at a time.

a function used for summarising scores. Default is mean.

logical, whether or not to compute relative performance between models based
on pairwise comparisons. If TRUE (default is FALSE), then a column called
’model’ must be present in the input data. For more information on the com-
putation of relative skill, see pairwise_comparison(). Relative skill will be
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summarise_scores

calculated for the aggregation level specified in by.

relative_skill_metric

metric

baseline

Examples

character with the name of the metric for which a relative skill shall be com-
puted. If equal to ’auto’ (the default), then this will be either interval score,
CRPS or Brier score (depending on which of these is available in the input data)

[Deprecated] Deprecated in 1.1.0. Use relative_skill_metric instead.

character string with the name of a model. If a baseline is given, then a scaled
relative skill with respect to the baseline will be returned. By default (NULL),
relative skill will not be scaled with respect to a baseline model.

additional parameters that can be passed to the summary function provided to
fun. For more information see the documentation of the respective function.

library(magrittr) # pipe operator

scores <- score(example_continuous)
summarise_scores(scores)

# summarise over samples or quantiles to get one score per forecast
scores <- score(example_quantile)
summarise_scores(scores)

# get scores by model
summarise_scores(scores,by = "model"”)

# get scores by model and target type
summarise_scores(scores, by = c("model”, "target_type"))

# Get scores summarised across horizon, forecast date, and target end date
summarise_scores(
scores, across = c("horizon", "forecast_date”, "target_end_date")

)

# get standard deviation
summarise_scores(scores, by = "model”, fun = sd)

# round digits

summarise_scores(scores,by = "model”) %>%
summarise_scores(fun = signif, digits = 2)

# get quantiles of scores
# make sure to aggregate over ranges first
summarise_scores(scores,

by = "model”, fun = quantile,

probs = c(0.25, 0.5, 0.75)

)

# get ranges
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# summarise_scores(scores, by = "range")
theme_scoringutils Scoringutils ggplot2 theme
Description

A theme for ggplot2 plots used in scoringutils

Usage

theme_scoringutils()

Value

A ggplot2 theme

transform_forecasts Transform forecasts and observed values

Description

Function to transform forecasts and true values before scoring.

Usage

transform_forecasts(data, fun = log_shift, append = TRUE, label = "log", ...)
Arguments

data A data.frame or data.table with the predictions and observations. For scoring

using score(), the following columns need to be present:

e true_value - the true observed values

* prediction - predictions or predictive samples for one true value. (You
only don’t need to provide a prediction column if you want to score quantile
forecasts in a wide range format.)

For scoring integer and continuous forecasts a sample column is needed:

* sample - an index to identify the predictive samples in the prediction col-
umn generated by one model for one true value. Only necessary for contin-
uous and integer forecasts, not for binary predictions.

For scoring predictions in a quantile-format forecast you should provide a col-
umn called quantile:

* quantile: quantile to which the prediction corresponds
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In addition a model column is suggested and if not present this will be flagged
and added to the input data with all forecasts assigned as an "unspecified model").

You can check the format of your data using check_forecasts() and there
are examples for each format (example_quantile, example_continuous, exam-
ple_integer, and example_binary).

fun A function used to transform both true values and predictions. The default func-
tion is log_shift(), a custom function that is essentially the same as log(),
but has an additional arguments (offset) that allows you add an offset before
applying the logarithm. This is often helpful as the natural log transformation is
not defined at zero. A common, and pragmatic solution, is to add a small offset
to the data before applying the log transformation. In our work we have often
used an offset of 1 but the precise value will depend on your application.

append Logical, defaults to TRUE. Whether or not to append a transformed version of the
data to the currently existing data (TRUE). If selected, the data gets transformed
and appended to the existing data frame, making it possible to use the outcome
directly in score(). An additional column, ’scale’, gets created that denotes
which rows or untransformed (’scale’ has the value "natural") and which have
been transformed (’scale’ has the value passed to the argument label).

label A string for the newly created ’scale’ column to denote the newly transformed
values. Only relevant if append = TRUE.

Additional parameters to pass to the function you supplied. For the default op-
tion of log_shift() this could be the of fset argument.

Details

There are a few reasons, depending on the circumstances, for why this might be desirable (check
out the linked reference for more info). In epidemiology, for example, it may be useful to log-
transform incidence counts before evaluating forecasts using scores such as the weighted interval
score (WIS) or the continuous ranked probability score (CRPS). Log-transforming forecasts and
observations changes the interpretation of the score from a measure of absolute distance between
forecast and observation to a score that evaluates a forecast of the exponential growth rate. Another
motivation can be to apply a variance-stabilising transformation or to standardise incidence counts
by population.

Note that if you want to apply a transformation, it is important to transform the forecasts and obser-
vations and then apply the score. Applying a transformation after the score risks losing propriety of
the proper scoring rule.

Value

A data.table with either a transformed version of the data, or one with both the untransformed
and the transformed data. includes the original data as well as a transformation of the original
data. There will be one additional column, ‘scale’, present which will be set to "natural" for the
untransformed forecasts.

Author(s)

Nikos Bosse <nikosbosse@gmail.com>
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References

Transformation of forecasts for evaluating predictive performance in an epidemiological context
Nikos I. Bosse, Sam Abbott, Anne Cori, Edwin van Leeuwen, Johannes Bracher, Sebastian Funk
medRxiv 2023.01.23.23284722 doi:10.1101/2023.01.23.23284722 https://www.medrxiv.org/
content/10.1101/2023.01.23.23284722v1

Examples

library(magrittr) # pipe operator

# transform forecasts using the natural logarithm
# negative values need to be handled (here by replacing them with 0)
example_quantile %>%

.[, true_value := ifelse(true_value < @, 0, true_value)] %>%
# Here we use the default function log_shift() which is essentially the same
# as log(), but has an additional arguments (offset) that allows you add an
# offset before applying the logarithm.

transform_forecasts(append = FALSE) %>%

head()

# alternatively, integrating the truncation in the transformation function:
example_quantile %>%
transform_forecasts(
fun = function(x) {log_shift(pmax(@, x))3}, append = FALSE
) %%
head()

# specifying an offset for the log transformation removes the
# warning caused by zeros in the data
example_quantile %>%

.[, true_value := ifelse(true_value < 0, 0, true_value)] %>%
transform_forecasts(offset = 1, append = FALSE) %>%
head()

# adding square root transformed forecasts to the original ones
example_quantile %>%

.[, true_value := ifelse(true_value < @, 0, true_value)] %>%
transform_forecasts(fun = sqrt, label = "sqrt") %>%

score() %>%

summarise_scores(by = c("model”, "scale"))

# adding multiple transformations
example_quantile %>%

.[, true_value := ifelse(true_value < @, 0, true_value)] %>%
transform_forecasts(fun = log_shift, offset = 1) %>%
transform_forecasts(fun = sqrt, label = "sqrt") %>%

head()
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