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1 Introduction

The shotGroups package adds functionality to the open source statistical environment R (R
Development Core Team, 2021a).1 It provides functions to read in, plot, statistically describe,
analyze, and compare shooting data with respect to group shape, precision, and accuracy.

• The functionality includes graphical methods, descriptive statistics, and inference tests
using standard, but also non-parametric and robust statistical techniques (section 2).

• The package includes limited support for the analysis of three-dimensional data (sections
3.2.1, 3.2.2).

• Inference from range statistics like extreme spread is also supported (section 3.4).

• The data can be imported from files produced by OnTarget PC and OnTarget TDS
(Block, 2016), Silver Mountain e-target (Silver Mountain Targets, 2018), ShotMarker
e-target (MacDonald, 2018), Taran (Trofimov, 2016), or from custom data files in text
format with a similar structure.

Use help(package="shotGroups") for a list of all functions and links to the detailed help
pages with information on options, usage and output.

For users who are unfamiliar with R, shotGroups includes a set of shiny-based web applications
(Chang, Cheng, Allaire, Xie, & McPherson, 2021) running locally that eliminate the need to use
R syntax. The applications implement different aspects of the functionality of shotGroups:

• runGUI("analyze") – Comprehensive shot group analysis and visualization (sections 2.3,
2.4, 2.5, 3.5)2

• runGUI("hitprob") – Region ´ hit probability calculations (sections 3.2.2, 3.2.2)3

• runGUI("range") – Estimate Rayleigh σ from range statistics and do efficiency calcula-
tions for group statistics (section 3.4)4

• runGUI("angular") – Absolute ´ angular size conversions (section 3.7)5

2 Analyzing bullet hole data

Analyzing shot groups usually takes the following steps:

• Read in data (section 2.1)

• Perform either a comprehensive numerical as well as graphical analysis of a group’s shape,
spread (precision), and location (accuracy) with analyzeGroup() (section 2.2) . . .

• . . . or analyze these aspects of a group separately with groupShape() (section 2.3),
groupSpread() (section 2.4), groupLocation() (section 2.5)

1For an introduction to R, see Dalgaard (2008) or Quick-R (https://www.statmethods.net/).
2http://shiny.imbei.uni-mainz.de:3838/shotGroups_AnalyzeGroups/
3http://shiny.imbei.uni-mainz.de:3838/shotGroups_HitProb/
4http://shiny.imbei.uni-mainz.de:3838/shotGroups_RangeStat/
5http://shiny.imbei.uni-mainz.de:3838/shotGroups_AngularSize/
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• Numerically and visually compare different groups in terms of their shape, location
(accuracy), and spread (precision) with compareGroups() (section 2.6)

• Use additional utility functions to individually explore different aspects of a given group
(section 3)

Grubbs (1964b) and http://ballistipedia.com/ are good sources for statistical methods for
analyzing shot groups.

2.1 Reading in data

To import data into R, it should be saved as a text file with the following format:

• The file should have one row for each shot, and one column for each coordinate as well as
for any other variable such as distance to target, point-of-aim coordinates.

• Columns should be separated by commas, tabs or other whitespace. This type of text file
can be exported from OnTarget PC/TDS, Silver Mountain e-target, ShotMarker e-target,
Taran, or from a spreadsheet application like Excel or Calc.

• The file needs a header in the first line giving the variable names, and should contain at
least the coordinates of points of impact, either with variable names Point.X, Point.Y

or just X, Y.

• For several analysis functions, the following additional variables are useful: Group (group
number), Distance (distance to target), and Aim.X, Aim.Y (point of aim). If these
variables are missing, default values are assumed with a warning.

• If you have output files from OnTarget PC/TDS, you can read multiple files with
readDataOT1() (for OnTarget PC v1.*, tested with v1.10), or with readDataOT2() (for
OnTarget PC v2.* - tested with v2.28, and OnTarget TDS - tested with v3.71, v3.89,
v6.09).

• If you have output files from the Silver Mountain e-target system, you can read multiple
files with readDataSMT().

• If you have CSV output files or .tar backup files from the ShotMarker e-target system,
you can read multiple files with readDataShotMarker().

• If you have other whitespace or comma-separated text files with the structure outlined
above (e. g. from Taran), you can read multiple files with readDataMisc(). For three-
dimensional data, this function also recognizes variables Point.Z or Z and Aim.Z.

• If your data is saved in some other text file format, consult the help for read.table() or
the R import/export manual (R Development Core Team, 2021b).

library(shotGroups, verbose=FALSE) # load shotGroups package

## read text files and save to data frame

## not run, we later use data frame provided in package instead

DFgroups <- readDataMisc(fPath="c:/path/to/files",

fNames=c("series1.dat", "series2.dat"))

By default, OnTarget’s “Export Point Data” places the origin of the coordinate system in
the top-left corner. This can be taken into account by correctly setting the option xyTopLeft
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in functions analyzeGroup() (section 2.2), compareGroups (section 2.6), and drawGroup()

(section 3.5). In OnTarget TDS, the orientation of the y-axis can be changed by checking the
box “Tools → Options → Options tab → Data Export → Invert Y-Axis on Export”. If groups
appear to be upside-down, xyTopLeft is the setting to change.

When analyzing different aspects of a group separately using groupShape() (section 2.3),
groupSpread() (section 2.4), and groupLocation() (section 2.5), the scatterplots will be
upside-down if the default option of OnTarget was used.

2.2 Performing a combined analysis

analyzeGroup(): This function is a convencience wrapper for the functions presented in
sections 2.3, 2.4, and 2.5. It analyzes a group’s shape, precision, and accuracy in one go, and
collects the results.

library(shotGroups, verbose=FALSE) # load shotGroups package

analyzeGroup(DFtalon, dstTarget=10, conversion="m2mm")

## output not shown, see following sections for results

2.3 Analyzing group shape

groupShape(): Assess (multivariate) normality, identify outliers and get a sense for the shape
of the bivariate distribution.

Reported statistical parameters and tests:

• Correlation matrix including a robust estimate using the MCD method (from package
robustbase; Rousseeuw et al., 2021).

• Outlier identification – requires installing package mvoutlier (Filzmoser & Gschwandtner,
2018) first: Either using squared robust Mahalanobis distances and adjusted quantiles
from the χ2-distribution, or using robust principal components analysis (PCA) with
options to tune the sensitivity.

• Shapiro-Wilk normality tests for the distribution of x- and y-coordinates. For more than
5000 observations, the drop-in Kolmogorov-Smirnov-test is reported instead.

• Energy test for bivariate normality of (x, y)-coordinates – requires installing package
energy (Rizzo & Szekely, 2021) first.

Plots:

• Combined plot for multivariate outlier identification using squared robust Mahalanobis
distances and adjusted quantiles from the χ2-distribution – requires installing mvoutlier

• χ2 QQ-plot of squared robust Mahalanobis distances to group center for eyeballing
multivariate normality of (x, y)-coordinates

• Heatmap of a non-parametric 2D-kernel density estimate for the (x, y)-coordinates (from
package KernSmooth; Wand, 2020) together with robust group center and robust error
ellipse
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• QQ-plots of x- and y-coordinates for eyeballing normality

• Histogram of x- and y-coordinates including a fitted normal distribution as well as a
non-parametric kernel density estimate

library(shotGroups, verbose=FALSE) # load shotGroups package

groupShape(DFtalon, bandW=0.4, outlier="mcd",

dstTarget=10, conversion="mm2m")

$corXY

x y

x 1.0000 -0.2931

y -0.2931 1.0000

$corXYrob

x y

x 1.0000 0.1083

y 0.1083 1.0000

$Outliers

[1] 22 24 25 26 28 31 32 33 35 39 81 82 83 85 158

$ShapiroX

Shapiro-Wilk normality test

data: X

W = 0.95, p-value = 3e-06

$ShapiroY

Shapiro-Wilk normality test

data: Y

W = 0.96, p-value = 2e-05

$multNorm

Energy test of multivariate normality: estimated parameters

data: x, sample size 180, dimension 2, replicates 1499

E-statistic = 3.7, p-value <2e-16
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Q−Q−plot y−coordinates for eyeballing normality

distance: 10 mm
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Histogram y−coordinates w/ kernel density estimate

distance: 10 mm
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2.4 Analyzing group spread – precision

groupSpread(): Assess precision using empirical and parametric spread measures with con-
fidence intervals. Where possible, also use the MCD method for a robust estimate of the
covariance matrix (from package robustbase). Bootstrap confidence intervals are from package
boot (Canty & Ripley, 2021) with 1499 replications.

Reported statistical parameters and tests:

• (Robust) Standard deviations of x- and y-coordinates together with parametric and
bootstrap confidence intervals (in original measurement units, MOA, SMOA, mrad)

• (Robust) Covariance matrix of (x, y)-coordinates

• Empirical mean and median radius as well as estimated Rayleigh precision parameter σ,

estimated Rayleigh radial standard deviation RSD = σ
�

4−π
2 , and estimated Rayleigh
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mean radius MR = σ
�

π
2 together with parametric and bootstrap confidence intervals for

σ, RSD, and MR (in original measurement units, MOA, SMOA, mrad)

• Maximum pairwise distance (center-to-center, = maximum spread, in original measurement
units, MOA, SMOA, mrad)

• Width and height of bounding box with length of diagonal and figure of merit as well
as of the (oriented) minimum-area bounding box (in original measurement units, MOA,
SMOA, mrad)

• Radius for the minimum enclosing circle (in original measurement units, MOA, SMOA,
mrad)

• Length of semi-major and semi-minor axis of the (robust) confidence ellipse (in original
measurement units, MOA, SMOA, mrad)

• Aspect ratio
√

κ (with condition index κ) and flattening 1 − 1√
κ

of the (robust) confidence

ellipse as well as the trace and determinant of the covariance matrix

• Estimate for the circular error probable CEP (section 3.2.1; in original measurement
units, MOA, SMOA, mrad)

Plots:

• Scatterplot of the (x, y)-coordinates together with group center, circle with average
distance to center, and (robust) confidence ellipse

• Scatterplot of the (x, y)-coordinates together with the bounding box, minimum-area
bounding box, minimum enclosing circle, and maximum group spread

• Histogram of distances to group center including a Rayleigh fit and a non-parametric
kernel density estimate

library(shotGroups, verbose=FALSE) # load shotGroups package

groupSpread(DFtalon, CEPtype=c("CorrNormal", "GrubbsPatnaik", "Rayleigh"),

CEPlevel=0.5, CIlevel=0.95, bootCI="basic",

dstTarget=10, conversion="m2mm")

$sdXY

x y

unit 2.2746 2.7308

MOA 0.7819 0.9388

SMOA 0.8188 0.9831

mrad 0.2275 0.2731

$sdXci

sdX ( sdX ) sdX basic ( sdX basic )

unit 2.0614 2.5374 1.9445 2.6071

MOA 0.7087 0.8723 0.6685 0.8963

SMOA 0.7421 0.9134 0.7000 0.9386

mrad 0.2061 0.2537 0.1944 0.2607

$sdYci
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sdY ( sdY ) sdY basic ( sdY basic )

unit 2.4749 3.0463 2.4363 3.0454

MOA 0.8508 1.0472 0.8375 1.0469

SMOA 0.8909 1.0967 0.8771 1.0963

mrad 0.2475 0.3046 0.2436 0.3045

$sdXYrob

x y

unit 2.0556 2.3094

MOA 0.7066 0.7939

SMOA 0.7400 0.8314

mrad 0.2056 0.2309

$covXY

x y

x 5.174 -1.820

y -1.820 7.457

$covXYrob

x y

x 4.2253 0.5141

y 0.5141 5.3332

$distToCtr

mean median max sigma RSD MR

unit 2.9486 2.6696 11.772 2.5148 1.6476 3.1519

MOA 1.0137 0.9178 4.047 0.8645 0.5664 1.0835

SMOA 1.0615 0.9611 4.238 0.9053 0.5931 1.1347

mrad 0.2949 0.2670 1.177 0.2515 0.1648 0.3152

$sigmaCI

sigma ( sigma ) sigma basic ( sigma basic )

unit 2.3433 2.7136 2.2368 2.7934

MOA 0.8056 0.9329 0.7690 0.9603

SMOA 0.8436 0.9769 0.8053 1.0056

mrad 0.2343 0.2714 0.2237 0.2793

$RSDci

RSD ( RSD ) RSD basic ( RSD basic )

unit 1.5352 1.7778 1.4654 1.8300

MOA 0.5278 0.6112 0.5038 0.6291

SMOA 0.5527 0.6400 0.5275 0.6588

mrad 0.1535 0.1778 0.1465 0.1830

$MRci

MR ( MR ) MR basic ( MR basic )
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unit 2.9369 3.4010 2.8034 3.5010

MOA 1.0096 1.1692 0.9637 1.2035

SMOA 1.0573 1.2244 1.0092 1.2603

mrad 0.2937 0.3401 0.2803 0.3501

$maxPairDist

unit MOA SMOA mrad

16.819 5.782 6.055 1.682

$groupRect

width height FoM diag

unit 14.050 13.840 13.945 19.722

MOA 4.830 4.758 4.794 6.780

SMOA 5.058 4.982 5.020 7.100

mrad 1.405 1.384 1.394 1.972

$groupRectMin

width height FoM diag

unit 15.185 12.517 13.851 19.679

MOA 5.220 4.303 4.762 6.765

SMOA 5.466 4.506 4.986 7.084

mrad 1.518 1.252 1.385 1.968

$minCircleRad

unit MOA SMOA mrad

8.4095 2.8910 3.0274 0.8409

$minEll

semi_major semi_minor

unit 8.7976 7.0522

MOA 3.0244 2.4244

SMOA 3.1671 2.5388

mrad 0.8798 0.7052

$confEll

semi-major semi-minor

unit 3.4321 2.4081

MOA 1.1799 0.8278

SMOA 1.2356 0.8669

mrad 0.3432 0.2408

$confEllRob

semi-major semi-minor

unit 2.7545 2.4062

MOA 0.9469 0.8272

SMOA 0.9916 0.8662
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mrad 0.2755 0.2406

$confEllShape

angle aspectRatio flattening trace det

118.9509 1.4253 0.2984 12.6311 35.2687

$confEllShapeRob

angle aspectRatio flattening trace det

71.2643 1.1448 0.1265 9.6123 22.6821

$CEP

$CEP$CEP0.5

CorrNormal GrubbsPatnaik Rayleigh

unit 2.9013 2.8913 2.9610

MOA 0.9974 0.9939 1.0179

SMOA 1.0445 1.0409 1.0660

mrad 0.2901 0.2891 0.2961

Histogram distances to center w/ kernel density estimate

distance: 10 m
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2.5 Analyzing group location – accuracy

groupLocation(): Assess accuracy of a group using empirical and parametric measures. Where
possible, also use the MCD method for a robust estimate of the covariance matrix (from package
robustbase). Bootstrap confidence intervals are from package boot with 1499 replications.

Reported statistical parameters and tests:

• (x, y)-offset of (robust) group center relative to point of aim

• Distance from (robust) group center to point of aim (in original measurement units, MOA,
SMOA, mrad)

• Hotelling’s T 2-test result for equality of the true group center with point of aim

• Parametric and bootstrap confidence intervals for the true center’s x- and y-coordinate

Plots:

• Scatterplot of the (x, y)-coordinates together with (robust) group center.

library(shotGroups, verbose=FALSE) # load shotGroups package

groupLocation(DFtalon, dstTarget=10, conversion="m2mm",

level=0.95, plots=FALSE, bootCI="basic")

$ctr

x y

0.8947 -0.3432

$ctrRob

x y

0.4481 0.3938

$distPOA
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unit MOA SMOA mrad

0.95828 0.32943 0.34498 0.09583

$distPOArob

unit MOA SMOA mrad

0.59661 0.20510 0.21478 0.05966

$Hotelling

Analysis of Variance Table

Df Hotelling-Lawley approx F num Df den Df Pr(>F)

(Intercept) 1 0.156 13.9 2 178 2.5e-06

Residuals 179

$ctrXci

x ( x )

t 0.5602 1.229

basic 0.5296 1.216

$ctrYci

y ( y )

t -0.7448 0.05849

basic -0.7413 0.08493

2.6 Comparing groups

compareGroups(): Compare two or more groups with regard to their precision and accuracy
using empirical measures and statistical tests.

compareGroups() requires that the data includes a variable series that identifies shot groups.
OnTarget PC/TDS’ variable group identifies groups just within one file, series should number
groups also across different original files. When you read in data with readDataOT1(), series

is added automatically (same for readDataOT2(), readDataSMT(), readDataShotMarker(),
and readDataMisc()). For data from just one file, you can otherwise copy variable group to
series in a data frame called shots with

shots$series <- shots$group

Reported statistical parameters and tests:

• Group center offset from the respective point of aim

• Distances from group centers to their respective point of aim (in original measurement
units, MOA, SMOA, mrad)

• MANOVA result from testing equality of group center offset from the respective point of
aim

• Group correlation matrices for the (x, y)-coordinates
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• Group standard deviations of the x- and y-coordinates including parametric 95%-confidence
intervals (in original measurement units, MOA, SMOA, mrad)

• Average distances from points to their respective group center (in original measurement
units, MOA, SMOA, mrad)

• Maximum pairwise distance between points for each group (center-to-center, = maximum
spread, in original measurement units, MOA, SMOA, mrad)

• Figure of merit FoM and diagonal of the (oriented) minimum-area bounding box for each
group (in original measurement units, MOA, SMOA, mrad)

• Radius of the minimum enclosing circle for each group (in original measurement units,
MOA, SMOA, mrad)

• Estimated Rayleigh parameter σ (precision) for each group (in original measurement
units, MOA, SMOA, mrad)

• Estimated Rayleigh mean radius MR for each group (in original measurement units, MOA,
SMOA, mrad)

• Parametric χ2 confidence intervals for Rayleigh σ and MR (in original measurement units,
MOA, SMOA, mrad)

• Estimate for the 50% circular error probable (CEP) in each group (section 3.2.1; in
original measurement units, MOA, SMOA, mrad)

• Ansari-Bradley-test results from testing equality of group variances for x- and y-coordinates
– when two groups are compared. With more than two groups, the Fligner-Killeen-test is
used

• Wilcoxon-Rank-Sum-test (= Mann-Whitney-U -test) result from testing equality of average
point distances to their respective group center – when two groups are compared. With
more than two groups, the Kruskal-Wallis-test is used

The Ansari-Bradley-, Fligner-Killeen-, Wilcoxon-Rank-Sum-, and Kruskal-Wallis-tests are
implemented as permutation tests using the coin package (Hothorn, Hornik, van de Wiel, &
Zeileis, 2008). The tests for two groups (Ansari-Bradley, Wilcoxon) use the exact permutation
distribution, the tests for more than two groups (Fligner-Killeen, Kruskal-Wallis) use the
approximate permutation distribution with 9999 random permutations.

Plots:

• Scatterplot showing all groups as well as their respective center and 50%-confidence ellipse

• Scatterplot showing all groups as well as their respective (minimum) bounding box and
maximum group spread

• Scatterplot showing all groups as well as their respective minimum enclosing circle and
circle with average distance to center

• Boxplot for the distances to group center per group

• Stripchart showing the distances to group center per group together with the estimated
Rayleigh mean radius and its confidence interval

library(shotGroups, verbose=FALSE) # load shotGroups package

## only use first 3 groups of DFtalon
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DFsub <- subset(DFtalon, series %in% 1:3)

compareGroups(DFsub, dstTarget=10, conversion="m2mm")

$ctr

1 2 3

x 0.3475 3.856 -0.7985

y -0.1910 -2.913 -1.6140

$distPOA

1 2 3

unit 0.39653 4.8329 1.8007

MOA 0.13632 1.6614 0.6190

SMOA 0.14275 1.7399 0.6483

mrad 0.03965 0.4833 0.1801

$MANOVA

Analysis of Variance Table

Df Wilks approx F num Df den Df Pr(>F)

(Intercept) 1 0.676 13.4 2 56 1.7e-05

series 2 0.504 11.4 4 112 7.9e-08

Residuals 57

$corXY

$corXY$`1`

x y

x 1.0000 -0.4632

y -0.4632 1.0000

$corXY$`2`

x y

x 1.0000 -0.2143

y -0.2143 1.0000

$corXY$`3`

x y

x 1.0000 -0.5081

y -0.5081 1.0000

$sdXY

$sdXY$`1`

x y

unit 0.94037 1.4912

MOA 0.32327 0.5126

SMOA 0.33853 0.5368
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mrad 0.09404 0.1491

$sdXY$`2`

x y

unit 3.3539 4.220

MOA 1.1530 1.451

SMOA 1.2074 1.519

mrad 0.3354 0.422

$sdXY$`3`

x y

unit 1.7549 1.6556

MOA 0.6033 0.5691

SMOA 0.6318 0.5960

mrad 0.1755 0.1656

$sdXYci

$sdXYci$`1`

sdX ( sdX ) sdY ( sdY )

unit 0.71514 1.3735 1.1340 2.1780

MOA 0.24585 0.4722 0.3898 0.7487

SMOA 0.25745 0.4945 0.4082 0.7841

mrad 0.07151 0.1373 0.1134 0.2178

$sdXYci$`2`

sdX ( sdX ) sdY ( sdY )

unit 2.5506 4.8986 3.2094 6.1638

MOA 0.8768 1.6840 1.1033 2.1190

SMOA 0.9182 1.7635 1.1554 2.2190

mrad 0.2551 0.4899 0.3209 0.6164

$sdXYci$`3`

sdX ( sdX ) sdY ( sdY )

unit 1.3346 2.5631 1.2591 2.4181

MOA 0.4588 0.8811 0.4328 0.8313

SMOA 0.4804 0.9227 0.4533 0.8705

mrad 0.1335 0.2563 0.1259 0.2418

$meanDistToCtr

1 2 3

unit 1.2526 4.8246 2.0961

MOA 0.4306 1.6586 0.7206

SMOA 0.4509 1.7368 0.7546

mrad 0.1253 0.4825 0.2096
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$maxPairDist

1 2 3

unit 7.6423 15.650 8.0773

MOA 2.6272 5.380 2.7768

SMOA 2.7512 5.634 2.9078

mrad 0.7642 1.565 0.8077

$bbFoM

1 2 3

unit 5.2415 12.170 5.7565

MOA 1.8019 4.184 1.9790

SMOA 1.8869 4.381 2.0724

mrad 0.5241 1.217 0.5757

$bbDiag

1 2 3

unit 7.7121 17.219 8.7324

MOA 2.6512 5.920 3.0020

SMOA 2.7764 6.199 3.1437

mrad 0.7712 1.722 0.8732

$minCircleRad

1 2 3

unit 3.8212 7.8248 4.0386

MOA 1.3136 2.6900 1.3884

SMOA 1.3756 2.8169 1.4539

mrad 0.3821 0.7825 0.4039

$sigma

1 2 3

unit 1.2548 3.8369 1.7172

MOA 0.4314 1.3190 0.5903

SMOA 0.4517 1.3813 0.6182

mrad 0.1255 0.3837 0.1717

$MR

1 2 3

unit 1.5727 4.8088 2.1522

MOA 0.5406 1.6531 0.7399

SMOA 0.5662 1.7312 0.7748

mrad 0.1573 0.4809 0.2152

$sigmaMRci

$sigmaMRci$`1`

sigma ( sigma ) MR ( MR )

unit 1.0255 1.6172 1.2852 2.0268
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MOA 0.3525 0.5559 0.4418 0.6968

SMOA 0.3692 0.5822 0.4627 0.7296

mrad 0.1025 0.1617 0.1285 0.2027

$sigmaMRci$`2`

sigma ( sigma ) MR ( MR )

unit 3.1357 4.9449 3.930 6.1975

MOA 1.0780 1.6999 1.351 2.1305

SMOA 1.1288 1.7801 1.415 2.2311

mrad 0.3136 0.4945 0.393 0.6197

$sigmaMRci$`3`

sigma ( sigma ) MR ( MR )

unit 1.4034 2.2131 1.7589 2.7737

MOA 0.4824 0.7608 0.6047 0.9535

SMOA 0.5052 0.7967 0.6332 0.9985

mrad 0.1403 0.2213 0.1759 0.2774

$CEP

1 2 3

unit 1.3724 4.4169 1.9169

MOA 0.4718 1.5184 0.6590

SMOA 0.4941 1.5901 0.6901

mrad 0.1372 0.4417 0.1917

$FlignerX

Approximative K-Sample Fligner-Killeen Test

data: x by series (1, 2, 3)

chi-squared = 18, p-value <1e-04

$FlignerY

Approximative K-Sample Fligner-Killeen Test

data: y by series (1, 2, 3)

chi-squared = 21, p-value <1e-04

$Kruskal

Approximative Kruskal-Wallis Test
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data: dstCtr by series (1, 2, 3)

chi-squared = 30, p-value <1e-04
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3 Additional functionality

The shotGroups package also provides a number of utility functions that can be used separately
to . . .

• calculate individual descriptive precision measures (section 3.1)

• estimate hit probabilities: either get the region that is expected to contain a certain
fraction of shots, or get the estimated fraction of shots expected to be within a given
region (section 3.2)
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• estimate Rayleigh parameter σ from range statistics like extreme spread, and do efficiency
calculations for several group statistics (section 3.4)

• plot a group to scale on a target background and add precision indicators (section 3.5)

• simulate the ring count for a given group, bullet diameter, and target type (section 3.6)

• convert between absolute and angular size units deg, MOA, SMOA, rad, and mrad (section
3.7)

• try an analysis on collections of empirical data included in the package (section 3.8)

3.1 Descriptive precision measures – range statistics

The following functions can be used to calculate so-called range statistics. These are precision
measures that summarize a specific feature of the group’s geometry that is related to the groups
overall size. On average, range statistics grow with the number of shots per group, and therefore
must be considered in relation to the number of shots they summarize. Section 3.4 discusses
the distribution of range statistics, possibilities to use them for inference on true spread, and
their statistical efficiency. Section 3.5 illustrates how to add these precision indicators to a plot
of the group.

• getBoundingBox(): Calculates the vertices, length of diagonal, and figure of merit (FoM)
of the axis-aligned bounding box. This is the smallest rectangle that contains all points
(bullet hole centers), and has edges parallel to the x- and y-axis.

• getMinBBox(): Calculates the vertices, length of diagonal, and figure of merit (FoM) of
the minimum-area bounding box. This is the smallest, possibly oriented rectangle that
contains all points (bullet hole centers). Uses an approach similar to the rotating calipers
algorithm (Toussaint, 1983).

• getMinCircle(): Calculates center and radius of the minimum enclosing circle. This is
the smallest circle that contains all points (bullet hole centers). Uses the Skyum algorithm
(Skyum, 1991). Note that faster and likely more numerically stable algorithms exist,
also for generalizing the problem to higher dimensions (Fischer, Gärtner, & Kutz, 2003;
Computational Geometry Algorithms Library, 2021; Gärtner, 2021).

• getMinEllipse(): Calculates center and shape matrix of the minimum enclosing ellipse.
This is the smallest ellipse that contains all points (bullet hole centers). Uses Khachiyan’s
algorithm (Todd & Yildrim, 2007). Note that faster and likely more numerically stable
algorithms exist, also for generalizing the problem to higher dimensions (Computational
Geometry Algorithms Library, 2021).

• getMaxPairDist(): Calculates the maximum of all pairwise distances between points –
also called extreme spread, or group size.

• getDistToCtr(): Calculates the distances of a set of points to their center. The mean or
median can then be taken as a precision measure. The mean distance to group center is
not a range statistic as it includes information from all shots.

library(shotGroups, verbose=FALSE) # load shotGroups package

getBoundingBox(DFtalon) # axis-aligned bounding box

$pts
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xleft ybottom xright ytop

-4.43 -4.37 9.62 9.47

$width

[1] 14.05

$height

[1] 13.84

$FoM

[1] 13.95

$diag

[1] 19.72

getMinBBox(DFtalon) # minimum-area bounding box

$pts

x y

[1,] -2.447 11.428

[2,] -5.161 -3.512

[3,] 7.155 -5.750

[4,] 9.869 9.190

$width

[1] 15.18

$height

[1] 12.52

$FoM

[1] 13.85

$diag

[1] 19.68

$angle

y

79.7

getMinCircle(DFtalon) # minimum enclosing circle

$ctr

[1] 2.940 3.015

$rad

[1] 8.409
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getMinEllipse(DFtalon) # minimum enclosing ellipse

$ctr

[1] 3.726 2.242

$E

x y

x 0.015815 -0.003525

y -0.003525 0.017212

$cov

x y

x 66.26 13.57

y 13.57 60.88

$area

[1] 194.9

$shape

angle aspectRatio flattening trace det

39.3945 1.2475 0.1984 127.1319 3849.3009

$size

[1] 8.798 7.052

getMaxPairDist(DFtalon) # extreme spread / group size

$d

[1] 16.82

$idx

[1] 169 39

3.2 Estimating hit probability

Beyond calculating decriptive/geometric precision measures, shotGroups also includes functions
that provide inferential statistics to estimate hit probabilities.

• Section 3.2.1 shows how to estimate the circular, spherical or elliptical region that is
expected to contain a given fraction of shots.

• Section 3.2.2 describes how to estimate the fraction of shots expected to be within a given
distance to the true group center.

• Section 3.2.3 covers the extrapolation of hit probabilities to different distances other than
the one a group was actually shot at.
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3.2.1 Region for a given hit probability: CEP, SEP and confidence ellipse

The following functions estimate the region that is expected to contain a given fraction of shots
(bullet hole centers) under different assumptions. The given fraction of shots is the same as
the probability for one shot to lie within the calculated region. The functions can use the
MCD method for a robust estimate of the group center and covariance matrix (from package
robustbase).

• getCEP(): Calculates estimates for the Circular Error Probable CEP. For three-dimensional
data, the Spherical Error Probable SEP is returned. The CEP/SEP estimate is the radius
of the circle/sphere around the point of aim (POA) that is expected to cover a certain
fraction of points. If systematic accuracy bias is ignored, the POA is assumed to coincide
with the true group center. If systematic accuracy bias is taken into account, the POA is
in the origin (0, 0), possibly offset from the true group center. The following estimates
are available:

– CorrNormal: If systematic accuracy bias is ignored, and for two-dimensional data,
this estimate is based on the Hoyt distribution for radial error in correlated bivariate
normal variables re-written in polar coordinates (radius and angle; Hoyt, 1947;
Paris, 2009a, 2009b). If systematic accuracy bias is taken into account, a numerical
algorithm (Farebrother implemented in package CompQuadForm, Duchesne and Lafaye
de Micheaux (2010)) is used to calculate the cumulative distribution function (cdf)
of radial error from integration of the multivariate normal distribution over an offset
disc (DiDonato & Jarnagin, 1961a; Evans, Govindarajulu, & Barthoulot, 1985) or
sphere (DiDonato, 1988). The CorrNormal estimate is available for all probability
levels.

∗ Krempasky: The Krempasky (2003) estimate is based on a nearly exact closed-
form solution for the 50% quantile of the Hoyt distribution. It is only available
for accuracy=FALSE and does not generalize to three dimensions.

∗ Ignani: The Ignani estimate (Ignani, 2010) is based on a polynomial approxi-
mation for the 50%, 90%, 95%, and 99% quantiles of the Hoyt distribution. It
is only available for accuracy=FALSE and generalizes to three dimensions.

∗ RAND: The modified RAND R-234 estimate (RAND Corporation, 1952) is based
on lookup tables for the 50% quantile of the Hoyt distribution. The tables were
later cast into an algebraic form that is essentially the Rayleigh estimator (see
below) with a weighted average of the variances of the de-correlated data to
estimate the true standard deviation. The bias correction with accuracy=TRUE

is based on a cubic regression fit to tabulated data (Pesapane & Irvine, 1977;
Puhek, 1992). This estimate does not generalize to three dimensions.

∗ Valstar: The Valstar estimate (Puhek, 1992) for the 50% quantile of the
Hoyt distribution differs from the RAND-estimate only for highly elliptical
distributions and in its method of correcting for systematic accuracy bias. This
estimate does not generalize to three dimensions.

– GrubbsPearson: The Grubbs-Pearson estimate (Grubbs, 1964a) is based on the
Pearson three-moment central χ2-approximation (Imhof, 1961; Pearson, 1959) of
the cdf of radial error in bivariate normal variables. Shot coordinates may be
correlated and have unequal variances. The eigenvalues of the covariance matrix
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of coordinates are used as variance estimates since they are the variances of the
principal components (the PCA-rotated = decorrelated data). For probabilities
g 0.25, the approximation is very close to the cdf used in CorrNormal – but easier to
calculate. For probabilities < 0.25 and some distribution shapes, the approximation
can diverge from the actual cdf. The Grubbs-Pearson estimate is available for all
probability levels, and generalizes to three dimensions.

– GrubbsPatnaik: The Grubbs-Patnaik estimate (Grubbs, 1964a) differs from the
Grubbs-Pearson estimate insofar as it is based on the Patnaik (1949) two-moment
central χ2-approximation of the true cdf of radial error. For probabilities < 0.5 and
some distribution shapes, the approximation can diverge from the actual cdf.

– GrubbsLiu: The Grubbs-Liu estimate was not proposed by Grubbs but follows the
same principle as his original estimates. It differs from them insofar as it is based on
the Liu, Tang, and Zhang (2009) four-moment non-central χ2-approximation of the
true cdf of radial error. For accuracy=FALSE, it is identical to GrubbsPearson.

– Rayleigh: If systematic accuracy bias is ignored, and for two-dimensional data,
this estimate uses the Rayleigh distribution (H. P. Singh, 1992). It is valid for
uncorrelated bivariate normal coordinates with equal variances and zero mean. For
accuracy=FALSE and three-dimensional data, the Maxwell-Boltzmann distribution
is used. For accuracy=TRUE and two-dimensional data, the estimate uses the Rice
distribution. For accuracy=TRUE and three-dimensional data, it is based on the
offset sphere probabilities for the multivariate normal distribution set to have equal
variances. This estimate is available for all probability levels.

– RMSE: For accuracy=FALSE, this estimator is essentially the same as the RMSE
estimator often described in the GPS literature (van Diggelen, 2007) when using
centered data for calculating RMSE (square root of the mean squared error). It
is very similar to the Rayleigh estimator. For accuracy=TRUE, this is essentially
the same as the RMSE estimator often described in the GPS literature when using
the original, non-centered data for calculating RMSE. It is similar to the Rayleigh

estimator only when bias is small, but becomes seriously wrong otherwise. The RMSE

estimate is available for all probability levels, and generalizes to three dimensions.

– Ethridge: The Ethridge estimate (Ethridge, 1983) is not based on the assumption
of multivariate normality of shot coordinates but uses a robust unbiased estimator
for the median radius (Hogg, 1967). The Ethridge estimate is also documented in
Puhek (1992).6 This estimate can only be reported for probability 0.5 but generalizes
to three dimensions.

• getConfEll(): Calculates the confidence ellipse for the true mean of the distribution
under the assumption of multivariate normality of shot coordinates. The coordinates may
be correlated and have unequal variances. The confidence ellipse gives the iso-probability
contour, the points on its rim all have the same Mahalanobis distance to the center. The
result also includes the ellipse based on a robust estimate for the covariance matrix of
the coordinates using the MCD algorithm (from package robustbase). The confidence
ellipse generalizes to three-dimensional data.

Estimates based on the normal distribution use the plug-in method (Blischke & Halpin, 1966),

6Note that the formula for the Hogg weighted location estimate is wrong in Puhek (1992); Tongue (1993);
Wang, Yang, Jia, and Wang (2013); Wang, Yang, Yan, Wang, and Song (2014); Williams (1997).
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i. e., they substitute the true covariance matrix and mean vector with those estimated from the
data. They are thus strictly valid only for the asymptotic distribution, while the finite sample
distribution may differ somewhat. See section 3.2.4 for more references to relevant literature,
and section 3.3 for a discussion of the different distributions of radial error mentioned below.

## circular error probable

getCEP(DFscar17, type=c("GrubbsPatnaik", "Rayleigh"), CEPlevel=0.5,

dstTarget=100, conversion="yd2in")

$CEP

$CEP$CEP0.5

GrubbsPatnaik Rayleigh

unit 0.8415 0.8751

MOA 0.8036 0.8357

SMOA 0.8415 0.8751

mrad 0.2337 0.2431

$ellShape

aspectRatio flattening

1.4503 0.3105

$ctr

x y

2.599 2.299

## confidence ellipse

getConfEll(DFscar17, level=0.95,

dstTarget=100, conversion="yd2in")

$ctr

x y

2.599 2.299

$ctrRob

x y

2.804 2.283

$cov

x y

x 0.4492 -0.1695

y -0.1695 0.6253

$covRob

x y

x 0.03677 0.00779

y 0.00779 1.97410
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$size

semi-major semi-minor

unit 2.4900 1.7168

MOA 2.3778 1.6395

SMOA 2.4900 1.7168

mrad 0.6917 0.4769

$sizeRob

semi-major semi-minor

unit 4.099 0.5592

MOA 3.915 0.5340

SMOA 4.099 0.5592

mrad 1.139 0.1553

$shape

angle aspectRatio flattening trace det

121.2738 1.4503 0.3105 1.0745 0.2522

$shapeRob

angle aspectRatio flattening trace det

89.76961 7.33035 0.86358 2.01087 0.07253

$magFac

[1] 2.918

Function getRayParam() estimates the Rayleigh distribution’s radial precision parameter σ

together with its radial standard deviation RSD = σ
�

4−π
2 , and its mean radius MR = σ

�

π
2 ,

including parametric confidence intervals. For 3D data, it also estimates σ, MR = σ
�

8
π and

RSD = σ
�

3π−8
π of the Maxwell-Boltzmann distribution.

## Rayleigh parameter estimates with 95% confidence interval

getRayParam(DFscar17, level=0.95)

$sigma

sigma sigCIlo sigCIup

0.7432 0.5616 1.0991

$RSD

RSD RSDciLo RSDciUp

0.4869 0.3679 0.7201

$MR

MR MRciLo MRciUp

0.9315 0.7039 1.3775
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## Maxwell-Boltzmann parameter estimates with 95% confidence interval

xyz <- matrix(rnorm(60), ncol=3)

getRayParam(xyz, level=0.95)

$sigma

sigma sigCIlo sigCIup

1.151 0.973 1.409

$RSD

RSD RSDciLo RSDciUp

0.7751 0.6553 0.9489

$MR

MR MRciLo MRciUp

1.837 1.553 2.249

3.2.2 Hit probability for a given region

Given a circle or sphere with radius r around the true mean of the bullet hole distribution,
getHitProb() estimates the expected fraction of shots that has at most distance r to the group
center. The estimated fraction of shots is the same as the estimated probability for one shot to
lie in the circle with radius r. The probability can be calculated using the correlated bivariate
normal, Grubbs-Pearson χ2, Grubbs-Patnaik χ2, Grubbs-Liu χ2, and Rayleigh distribution as
explained in section 3.2.1.

In the example given below, we plug in the results for the 50%-CEP as calculated by getCEP()

in section 3.2.1 for r, and therefore expect a hit probability of 50%.

## for the Grubbs-Patnaik estimate

getHitProb(DFscar17, r=0.8414825, unit="in", doRob=FALSE,

dstTarget=100, conversion="yd2in", type="GrubbsPatnaik")

[1] 0.5

## for the Rayleigh estimate

getHitProb(DFscar17, r=0.8290354, unit="in", doRob=FALSE,

dstTarget=100, conversion="yd2in", type="Rayleigh")

[1] 0.4632

Another calculation gives the estimated fraction of shots within a circle with radius 1 MOA.

getHitProb(DFscar17, r=1, unit="MOA", doRob=FALSE,

dstTarget=100, conversion="yd2in", type="CorrNormal")

[1] 0.6508
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3.2.3 Extrapolating CEP and confidence ellipse to different distances

Function getCEP() returns the radius of the circular error probable (CEP) in absolute and
angular size units, as does getConfEll() for the size of the confidence ellipse (section 3.2.1).
Since angular size measures can be converted back to absolute size for arbitrary distances
(3.7.1), it is possible to estimate the absolute size of the CEP and confidence ellipse for distances
different than the one a group was actually shot at.

Given an observed group shot at 100 yd, one might, for example, calculate the radius of the
circle at 300 m that is expected to contain 50% of the shots. This calculation is highly idealized
as it makes the assumption that all influences on precision scale linearly with distance. Under
most circumstances, this assumption is invalid. Generally, extrapolating beyond observed data
can often be misleading. However, projecting CEP to slightly different distances might still
give a sufficient approximation.

## 50% circular error probable for group shot at 100yd

CEP100yd <- getCEP(DFscar17, type=c("GrubbsPatnaik", "Rayleigh"),

CEPlevel=0.5, dstTarget=100, conversion="yd2in")

## CEP in absolute and angular size units

CEP100yd$CEP

$CEP0.5

GrubbsPatnaik Rayleigh

unit 0.8415 0.8751

MOA 0.8036 0.8357

SMOA 0.8415 0.8751

mrad 0.2337 0.2431

## extract CEP in MOA

CEPmoa <- CEP100yd$CEP$CEP0.5["MOA", c("GrubbsPatnaik", "Rayleigh")]

## 50% CEP in inch for the same group extrapolated to 100m

fromMOA(CEPmoa, dst=100, conversion="m2in")

GrubbsPatnaik Rayleigh

55.22 57.42

Given a group shot at 100 yd, one may be interested in the expected fraction of shots within a
circular region with radius r = 1 inch around the group center at the distance of 100 m (section
3.2.2). To this end, we first convert 1 inch at 100 m to MOA, and then supply the MOA value
to getHitProb().

## 1 inch at 100 m in MOA

MOA <- getMOA(1, dst=100, conversion="m2in")

getHitProb(DFscar17, r=MOA, unit="MOA", doRob=FALSE,

dstTarget=100, conversion="yd2in", type="GrubbsPatnaik")
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[1] 0.0005236

3.2.4 Literature related to CEP

The literature on the circular error probable (CEP) is extensive and diverse: Applications for
CEP are found in areas such as target shooting, missile ballistics, error analysis for geopositional
asessments, or positional accuracy of navigation and guidance systems like GPS. The statistical
foundations in quadratic forms of normal variables are important for analyzing the power
of inference tests. The Hoyt and Rayleigh distribution have applications in (wireless) signal
processing, the Rice distribution is important for medical imaging techniques like MRI, the
Maxwell-Boltzmann distribution comes from the physics of ideal gases.

The following list is not intended to be complete. Beware that the quality of the cited articles
is not uniformly high. The relevant publications may be roughly categorized into different
groups:

• Articles that develop a CEP estimator or the modification of one – e. g., RAND-234 (RAND
Corporation, 1952), modified RAND-234 (Pesapane & Irvine, 1977), Grubbs (1964a),
Rayleigh (Culpepper, 1978; Saxena & Singh, 2005; H. P. Singh, 1992), Ethridge (1983),
Bell (1973), Nicholson, Braddock, and McDonald (1974), Siouris (1993), Krempasky
(2003), Ignani (2010), correlated bivariate normal (DiDonato & Jarnagin, 1961a; Evans et
al., 1985; Winkler & Bickert, 2012), and Bayes (Spall & Maryak, 1992).

• Some articles focus on the confidence intervals for CEP (DiDonato, 2007; Sathe, Joshi, &
Nabar, 1991; Taub & Thomas, 1983b; Thomas, Crigler, Gemmill, & Taub, 1973b; Thomas
& Crigler, 1974; Zhang & An, 2012).

• Articles, technical reports or Master’s theses comparing the characteristics of CEP
estimators in different scenarios (Blischke & Halpin, 1966; Elder, 1986; Kamat, 1962;
McMillan & McMillan, 2008; Moranda, 1959, 1960; Nelson, 1988; Puhek, 1992; Tongue,
1993; Taub & Thomas, 1983a; Wang, Jia, Yang, & Wang, 2013; Wang, Yang, et al., 2013;
Wang et al., 2014; Williams, 1997; Yakimenko, 2013; Carlson & Beer, 2021).

• Publications studying the correlated bivariate normal distribution with mean 0 re-written
in polar coordinates radius and angle (Chew & Boyce, 1962; Greenwalt & Shultz, 1962;
Harter, 1960; Hoover, 1984; Hoyt, 1947; Weingarten & DiDonato, 1961). The distribution
of the radius is known as the Hoyt (1947) distribution. The closed form expression for
its cumulative distribution function has only recently been identified as the symmetric
difference between two first-order Marcum Q-functions (Marcum, 1950; Paris, 2009a,
2009b). The latter are special cases of the non-central χ2-distribution (Nuttall, 1975). A
nearly correct closed-form solution for the 50% quantile is given by Krempasky (2003).
Childs, Coffey, and Travis (1975) and Ignani (2010) provide polynomial approximations for
the 50%, 90%, 95%, and 99% quantile. The statistical literature on coverage problems in
the multivariate normal distribution is reviewed in Guenther and Terragno (1964). From
the perspective of radio engineering, Beckmann (1962b, 1962a) works out the relationship
between the Rayleigh, Rice and Hoyt distribution and their generalization.

• Cadwell (1964); DiDonato and Jarnagin (1961a, 1961b, 1962a, 1962b); Evans et al. (1985);
D. C. Gilliland (1962); D. Gilliland and Hansen (1974); Moranda (1960) as well as
Ager (2004); Bell (1973); Evans et al. (1985); Shultz (1963) develop methods to use the

29



correlated bivariate normal distribution for CEP estimation when systematic accuracy
bias must be taken into account. This requires integrating the distribution over a disc
that is not centered on the true mean of the shot group but on the point of aim. This
so-called offset circle probability is the probability of a quadratic form of a normal variable
(Duchesne & Lafaye de Micheaux, 2010). The exact distribution of quadratic forms
is a weighted average of non-central χ2-distributions and difficult to calculate without
numerical tools. Therefore, the Patnaik (1949) two-moment central χ2-approximation or
the Pearson (Imhof, 1961; Pearson, 1959) three-moment central χ2-approximation are
often used. Liu et al. (2009) proposed a four-moment non-central χ2-approximation.

• A number of articles present algorithms for the efficient numerical calculation of the Hoyt
cumulative distribution function (cdf), as well as for its inverse, the quantile function
(DiDonato, 2004, 2007; Gillis, 1991; Govindarajulu, 1986; Pyati, 1993; Rogers, 1993;
Shnidman, 1995). Algorithms to efficiently and precisely calculate the distribution of
general quadratic forms of normal random variables include numerical integration Davies
(1980); Farebrother (1984, 1990); Imhof (1961); Sheil and O’Muircheartaigh (1977) and
the saddlepoint approximation (Kuonen, 1999). A comparison and implementation can be
found in Duchesne and Lafaye de Micheaux (2010). Other comparisons include Bodenham
and Adams (2016) and Chen and Lumley (2019).

• Eckler (1969); Eckler and Burr (1972) focus on the application of CEP in bombing tests.

• Peiliang et al. (2019); Zimmer, Park, and Mathew (2016); Spall and Maryak (1992); Spall
(1997) analyze CEP for a mixture of bivariate distributions.

• The Spherical Error Probable (SEP) is developed in Childs et al. (1975); DiDonato (1988);
Ignani (2010); Schulte (1968); N. Singh (1962, 1970); Siouris (1993); Thomas, Crigler,
Gemmill, and Taub (1973a).

• Papp and Rožnijk (2022) use simulation and stochastic approximation.

• The GPS-related literature on accuracy measures in navigation includes Mertikas (1985)
and Chin (1987).

3.3 Distributions for radial error

shotGroups implements several distributions for radial error in multivariate normal variables
which apply to different situations. In general, the following functions are available:

• dïNameð(): The probability density function (pdf).

• pïNameð(): The cumulative distribution function (cdf, the integral over the pdf).

• qïNameð(): The quantile function (cdf−1, the inverse of the cdf).

• rïNameð(): The function that generates random numbers from the given distribution.

The following distributions are available, illustrated in figure 1:

• Rayleigh: The radius around the true mean in a bivariate uncorrelated normal random
variable with equal variances, re-written in polar coordinates (radius and angle), follows
a Rayleigh distribution. Fully defined in closed form.

• Maxwell-Boltzmann: The radius around the true mean in a trivariate uncorrelated normal
random variable with equal variances, re-written in polar coordinates (radius, azimuth,
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elevation), follows a Maxwell-Boltzmann distribution. Fully defined in closed form (using
the cdf of the normal distribution).

• Rice: The radius around the origin in a bivariate uncorrelated normal random variable
with equal variances and an offset mean, re-written in polar coordinates (radius and
angle), follows a Rice distribution. The pdf, cdf, and inverse cdf are defined in closed
form with the Marcum Q-function. Reduces to the Rayleigh distribution if the mean has
no offset.

• Hoyt: The radius around the true mean in a bivariate correlated normal random variable
with unequal variances, re-written in polar coordinates (radius and angle), follows a Hoyt
distribution. The pdf and cdf are defined in closed form, numerical root finding is used to
find cdf−1. Reduces to the Rayleigh distribution if the correlation is 0 and the variances
are equal.

• General case: The distribution of the radius around the origin in a bivariate correlated
normal variable with unequal variances and an offset mean. The cdf of radial error is
equal to the integral of the bivariate normal distribution over an offset disc. Not defined in
closed form. Numerical integration provided by package CompQuadForm or a saddlepoint
approximation (Kuonen, 1999) for quadratic forms of normal random variables is used to
find the pdf and cdf (figure 2). Numerical root finding is used to find cdf−1. Reduces to
the Rice distribution if the correlation is 0 and the variances are equal. Reduces to the
Hoyt distribution if the mean has no offset.

## probability of staying within 10cm of the point of aim

## Rayleigh distribution

pRayleigh(10, scale=5)

[1] 0.8647

## Rice distribution with offset x=1, y=1

pRice(10, nu=sqrt(2), sigma=5)

[1] 0.8538

## Hoyt distribution - unequal variances

sdX <- 8 # standard deviation along x

sdY <- 4 # standard deviation along y

hp <- getHoytParam(c(sdX^2, sdY^2)) # convert to Hoyt parameters

pHoyt(10, qpar=hp$q, omega=hp$omega)

[1] 0.7332

## general case: unequal variances and offset x=1, y=1

sigma <- cbind(c(52, 20), c(20, 28)) # covariance matrix

pmvnEll(r=10, sigma=sigma, mu=c(1, 1), e=diag(2), x0=c(0, 0))

[1] 0.7251

31



The following examples show how the general correlated normal case encompasses the specialized
distributions for radial error. The radial error in each case is 1.5. First, the case of equal
variances and no offset mean.

## 1D - normal distribution with mean 0 for interval [-1.5, 1.5]

pnorm(1.5, mean=0, sd=2) - pnorm(-1.5, mean=0, sd=2)

[1] 0.5467

pmvnEll(1.5, sigma=4, mu=0, e=1, x0=0)

[1] 0.5467

## 2D - Rayleigh distribution

pRayleigh(1.5, scale=2)

[1] 0.2452

pmvnEll(1.5, sigma=diag(rep(4, 2)), mu=rep(0, 2), e=diag(2), x0=rep(0, 2))

[1] 0.2452

pmvnEll(1.5, sigma=diag(rep(4, 2)), mu=rep(0, 2), e=diag(2), x0=rep(0, 2),

method_cdf="saddlepoint")

[1] 0.2456

## 3D - Maxwell-Boltzmann distribution

pMaxwell(1.5, sigma=2)

[1] 0.09504

pmvnEll(1.5, sigma=diag(rep(4, 3)), mu=rep(0, 3), e=diag(3), x0=rep(0, 3))

[1] 0.09504

pmvnEll(1.5, sigma=diag(rep(4, 3)), mu=rep(0, 3), e=diag(3), x0=rep(0, 3),

method_cdf="saddlepoint")

[1] 0.09522

Next, the case of equal variances and an offset mean.
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## 1D - normal distribution with mean 1 for interval [-1.5, 1.5]

pnorm(1.5, mean=1, sd=2) - pnorm(-1.5, mean=1, sd=2)

[1] 0.4931

pmvnEll(1.5, sigma=4, mu=1, e=1, x0=0)

[1] 0.4931

## 2D - Rice distribution

pRice(1.5, nu=1, sigma=2)

[1] 0.22

pmvnEll(1.5, sigma=diag(c(4, 4)), mu=c(1, 0), e=diag(2), x0=c(0, 0))

[1] 0.22

pmvnEll(1.5, sigma=diag(c(4, 4)), mu=c(1, 0), e=diag(2), x0=c(0, 0),

method_cdf="saddlepoint")

[1] 0.2204

Next, the case of unequal variances and no offset mean.

## 2D - Hoyt distribution

sdX <- 4 # standard deviation along x

sdY <- 2 # standard deviation along y

hp <- getHoytParam(c(sdX^2, sdY^2)) # convert to Hoyt parameters

pHoyt(1.5, qpar=hp$q, omega=hp$omega)

[1] 0.1291

pmvnEll(1.5, sigma=diag(c(sdX^2, sdY^2)), mu=c(0, 0), e=diag(2), x0=c(0, 0))

[1] 0.1291

pmvnEll(1.5, sigma=diag(c(sdX^2, sdY^2)), mu=c(0, 0), e=diag(2), x0=c(0, 0),

method_cdf="saddlepoint")

[1] 0.132
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3.4 Inference from range statistics and efficiency calculations

When it seems too costly to collect (x, y)-coordinates of all shots, range statistics like extreme
spread, figure of merit, or the length of the bounding box diagonal are often measured instead
(section 3.1). The statistical distribution of these measures depends on the number of shots per
group n, and on the true spread of the distribution, but its exact form is unknown (Taylor &
Grubbs, 1975). Nevertheless, it is possible to use range statistics for inference on the true spread
of the distribution (Rayleigh parameter σ, section 3.2.1) when assuming a circular bivariate
normal shot distribution with 0 mean.

Following the approach from Taylor and Grubbs (1975), a Monte Carlo simulation of circular
bivariate normal shot groups with 0 mean and standard deviation 1 in both directions was
carried out, see also Gammon (2017). The result is a lookup table for the distribution of
extreme spread, figure of merit, bounding box diagonal, and Rayleigh σ. The table records the
first four moments (mean, variance, skewness, kurtosis), the coefficient of variation, as well as
the median and other major quantiles of the Monte Carlo distribution over 2 million repetitions
in each scenario. One scenario was a combination of the n shots in each group, and the ng

groups over which individual range statistics were averaged. Values for n were 2, 3, . . . , 49,
50, 55, . . . , 95, 100. Values for ng were 1, 2, . . . , 9, 10. The lookup table with the simulation
results is available as data frame DFdistr.

3.4.1 Distribution of range statistics

Based on the lookup table DFdistr, functions pRangeStat() and qRangeStat() give the
approximate cumulative distribution function and the quantile function of range statistics within
the parameter space covered by DFdistr (number of shots, number of groups, probabilities).
For parameter combinations that were not simulated, interpolation between the supporting
points is carried out. rRangeStat() generates random deviates.

# cumulative probability of extreme spread (ES) 4 and 5 with true

# Rayleigh sigma 1.5, and ES averaged over 3 groups with 5 shots each

(q45 <- pRangeStat(c(4, 5), sigma=1.5, n=5, nGroups=3, stat="ES"))

[1] 0.2057 0.7224

# quantiles for the returned probabilities, should be exactly 4 and 5

qRangeStat(q45, sigma=1.5, n=5, nGroups=3, stat="ES")

ES_Q206 ES_Q722

4 5

# random deviates for bounding box diagonal

rRangeStat(5, sigma=2, nPerGroup=5, nGroups=3, stat="D")

[1] 5.714 5.671 6.854 8.825 7.060
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3.4.2 Estimate Rayleigh σ from range statistics

Based on the lookup table from the Monte Carlo simulation, function range2sigma() estimates
the Rayleigh σ parameter from measured range statistics – extreme spread, figure of merit,
and the bounding box diagonal, assuming a circular bivariate normal shot distribution with 0
mean. This is possible because, conditional on n and ng, range statistics directly scale with
σ. Dividing the simulated mean range statistic for σ = 1 and the given n as well as ng by the
empirically measured range statistic therefore estimates σ. Confidence intervals can be inferred
from the corresponding quantiles of the Monte Carlo distribution.

If σ should be estimated for a value of n that was not simulated (but is less than 100), a
monotonic spline interpolation between the neighboring supporting points is used. If the
desired coverage probability for the confidence interval corresponds to quantiles that were
not calculated, the Monte Carlo distribution of squared extreme spread is approximated by a
Patnaik χ2 distribution as suggested by Taylor and Grubbs (1975).7

# get range statistics from DFscar17 data

es <- getMaxPairDist(DFscar17)$d # extreme spread

fom <- getBoundingBox(DFscar17)$FoM # figure of merit

d <- getBoundingBox(DFscar17)$diag # bounding box diagonal

# estimate Rayleigh sigma from each statistic

range2sigma(c(es, fom, d), stat=c("ES", "FoM", "D"),

n=nrow(DFscar17), nGroups=1, CIlevel=0.9,

dstTarget=100, conversion="yd2in")

$sigma

ES_3.048 FoM_2.445 D_3.463

unit 0.7996 0.7945 0.7832

MOA 0.7636 0.7587 0.7479

SMOA 0.7996 0.7945 0.7832

mrad 0.2221 0.2207 0.2176

$sigmaCI

$sigmaCI$ES

sigma ( sigma )

unit 0.5967 1.1374

MOA 0.5698 1.0861

SMOA 0.5967 1.1374

mrad 0.1657 0.3159

$sigmaCI$FoM

sigma ( sigma )

unit 0.6040 1.1126

MOA 0.5768 1.0624

SMOA 0.6040 1.1126

7Fort details, see http://ballistipedia.com/index.php?title=Range_Statistics
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mrad 0.1678 0.3091

$sigmaCI$D

sigma ( sigma )

unit 0.6781 1.293

MOA 0.6475 1.234

SMOA 0.6781 1.293

mrad 0.1883 0.359

Compare the results with estimating Rayleigh σ from using (x, y)-coordinates of all shots.

getRayParam(DFscar17, level=0.9)$sigma

sigma sigCIlo sigCIup

0.7432 0.5869 1.0290

Function range2CEP() directly estimates Rayleigh CEP from range statistics, by calling
getCEP() based on the Rayleigh σ as estimated by range2sigma().

3.4.3 Efficiency of group statistics

Assuming a circular bivariate normal shot distribution with 0 mean, the efficiency of using range
statistics for inference on the Rayleigh σ parameter can be estimated when the distribution of
the mean range statistic is assumed to be approximately normal – by appeal to the central
limit theorem.

Given the number of shots per group n, it is then possible to determine the number of groups
ng that is required to achieve a desired coverage probability (level) for the confidence interval
(CI) for σ with a desired CI width expressed as a fraction of the mean. Conversely, given n and
the number of groups ng over which the range statistic was averaged, we can estimate the CI
width as a fraction of the mean for the given coverage probability. The CI width is a measure
for the statistical precision of the estimator with more narrow CIs for the same level indicating
better precision.8

Get the number of groups and total number of shots required to achieve a 90% CI with a CI
width of 20% of the mean (E = 10% on either side), using 3, 5, or 10 shots per group and
measuring extreme spread.

# ...Ceil gives the result when the number of groups is rounded

# up to the nearest integer

efficiency(n=c(3, 5, 10), CIlevel=0.9, CIwidth=0.2, stat="ES")

n nGroupsReq nGroupsReqCeil nShotsReq nShotsReqCeil CIlevel CIwidth

1 3 37.09 38 111.3 114 0.9 0.2

2 5 19.68 20 98.4 100 0.9 0.2

3 10 10.24 11 102.4 110 0.9 0.2

8For details, noting that E in the references is half the CI width, see
http://ballistipedia.com/index.php?title=Range_Statistics

http://ballistipedia.com/images/3/32/Sitton_1990.pdf
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Compare the result to directly estimating Rayleigh σ from (x, y)-coordinates.

efficiency(n=c(3, 5, 10), CIlevel=0.9, CIwidth=0.2, stat="Rayleigh")

n nGroupsReq nGroupsReqCeil nShotsReq nShotsReqCeil CIlevel CIwidth

1 3 35.629 36 106.89 108 0.9 0.2

2 5 17.404 18 87.02 90 0.9 0.2

3 10 7.617 8 76.17 80 0.9 0.2

Given the simulated quantiles of the distribution for extreme spread, we can check that the
result for n = 10 given above when assuming normality of mean extreme spread is approximately
correct: The 5% quantile with ng = 10 groups indeed is about 10% below the mean, and the
95% quantile with 10 groups is about 10% above the mean.

with(subset(DFdistr, (n == 10L) & (nGroups == 10L)),

c(ES_Q050/ES_M, ES_Q950/ES_M))

[1] 0.9011 1.1033

Get the achievable 90% CI width as a fraction of the mean with 10 groups of 3, 5, 10 shots
each using extreme spread.

efficiency(n=c(3, 5, 10), nGroups=10, CIlevel=0.9, stat="ES")

n nGroups nShots CIlevel CIwidth

1 3 10 30 0.9 0.3852

2 5 10 50 0.9 0.2806

3 10 10 100 0.9 0.2024

3.5 Plotting scaled bullet holes on a target background

Function drawGroup() serves to illustrate a group of bullet holes by drawing the holes to scale
on a target background, possibly adding the following features:

• The diagram can be drawn in original measurement units, in absolute size units m, cm,
mm, yd, ft, in, or in angular measures deg, MOA, SMOA, rad, mrad, mil.

• A target background can be selected from a number of pre-defined circular target types from
different shooting federations (ISSF, NRA, DSB, BDS, BDMP, DSU, see help(targets)).
Targets can also be plotted just by themselves using drawTarget().

• Precision indicators can be added to the plot individually:

– (Minimum-area) bounding box with diagonal

– Minimum enclosing circle

– Maximum group spread

– Circle with mean distance to group center
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– (Robust) confidence ellipse

– Circular error probable CEP

• If a known target is supplied, the simulated ring value for each shot can be displayed
(section 3.6)

drawGroup() invisibly returns all the information that is shown in the diagram converted to
the requested measurement unit. In the following example, the original measurement unit for
(x, y)-coordinates was inch, the group is here drawn converted to cm. The second example
shows how to plot a CEP estimator for multiple levels.

library(shotGroups, verbose=FALSE) # load shotGroups package

dg1 <- drawGroup(DFcciHV, xyTopLeft=TRUE, bb=TRUE, minCirc=TRUE,

maxSpread=TRUE, scaled=TRUE, dstTarget=100,

conversion="yd2in", caliber=5.56, unit="cm", alpha=0.5,

target=NA)

## minimum enclosing circle parameters in cm

dg1$minCirc

$ctr

[1] -0.4395 1.5890

$rad

[1] 5.771

## show Grubbs CEP estimate for 50%, 90% and 95%

dg2 <- drawGroup(DFcciHV, xyTopLeft=TRUE, CEP="GrubbsPatnaik", scaled=TRUE,

level=c(0.5, 0.9, 0.95), dstTarget=100, conversion="yd2in",

caliber=5.56, unit="cm", alpha=0.5, target=NA)

## Grubbs CEP estimate for 50%, 90% and 95%

dg2$CEP

CEP0.5 CEP0.9 CEP0.95

2.471 4.592 5.254
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Now draw the group with coordinates converted to MOA, add the minimum-area bounding
box, 50%-confidence ellipse, use the ISSF 100 yd target, and show the ring value for each shot
(section 3.6).

library(shotGroups, verbose=FALSE) # load shotGroups package

dg3 <- drawGroup(DFcciHV, xyTopLeft=TRUE, bbMin=TRUE, bbDiag=TRUE,

confEll=TRUE, ringID=TRUE, level=0.5, scaled=TRUE,

dstTarget=100, conversion="yd2in", caliber=5.56, unit="MOA",

alpha=0.5, target="ISSF_100yd")

## simulated total ring count with maximum possible

dg3$ringCount

count max

351 400
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3.6 Simulate ring count

Given the (x, y)-coordinates of a group, bullet diameter, and target type with definition of ring
diameters, simRingCount() calculates a simulated ring count. This is an idealized calculation
as it assumes that bullet holes exactly have the bullet diameter, and that rings exactly have the
diameter given in the target definition. The count thus ignores the possibility of ragged bullet
holes as well as the physical width of the ring markings. The simulated ring count therefore
need not be equal to the calculated ring count from the corresponding physical target.

As an example, we simulate the ring count for the DFscar17 data from shooting a .308 rifle
(bullet diameter 7.62 mm) at 100 yd, using the ISSF target made for rifle shooting at 100 m.

library(shotGroups, verbose=FALSE) # load shotGroups package

## simulated ring count and maximum possible with given number of shots

simRingCount(DFscar17, target="ISSF_100m", caliber=7.62, unit="in")

$count

[1] 71

$max

[1] 100

$rings

[1] 7 6 7 7 7 7 7 7 8 8

Levels: 10 9 8 7 6 5 4 3 2 1 0

3.7 Conversion between absolute and angular size units

In addition to absolute length units, group size is often reported in terms of its angular
diameter. Angles can be measured equivalently either in degree or in radian. If x is the angular
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measurement in radian, and ϕ the angular measurement in degree for the same angle, then
x

2π = ϕ
360 such that conversion between degree and radian is given by x = 2π

360 · ϕ and ϕ = 360
2π · x

(figure 3).

The angular size of an object with absolute size s is its angular diameter at a given distance d.
This is the angle α subtended by the object with the line of sight centered on it (figure 4).

The shotGroups package includes functions getMOA() and fromMOA() to convert from absolute
object size to the angular diameter in degree, MOA, SMOA, radian, mrad, NATO mil, and
vice versa. The functions need the distance to target d, object sizes s and measurement units
for d and s. The option type controls which angular measure is returned:

• type="deg": Convert to/from angle in degree, where the circle is divided into 360 degrees.

• type="MOA": Convert to/from MOA = minute of angle = arcmin. 1 MOA = 1/60 degree
such that the circle is divided into 360 · 60 = 21600 MOA.

• type="SMOA": Convert to/from SMOA = Shooter’s MOA = Inches Per Hundred Yards
IPHY. 1 inch at 100 yards = 1 SMOA.

• type="rad": Convert to/from angle in radian, where 1 radian is 1 unit of arc length on
the unit circle which has a circumference of 2π. The circle circumference is thus divided
into 2π rad.

• type="mrad": Convert to/from mrad = milliradian = 1/1000 radian. The circle circum-
ference is divided into 2π · 1000 ≈ 6283.19 mrad.

• type="mil": Convert to/from NATO mil. 1 mil = 2π
6400 radian – the circle circumference

is divided into 6400 mils.

Function getDistance() returns the distance to an object given its absolute size and angular
size in deg, MOA, SMOA, rad, mrad, or mil.

3.7.1 Calculating the angular diameter of an object

Figure 4 shows how the angle α subtended by an object of size s at distance d can be
calculated from the right triangle with hypotenuse d and cathetus s/2: tan

�

α
2

�

= s
2 · 1

d , therefore
α = 2 · arctan

�

s
2d

�

.

Assuming that the argument for tan(·) and the result from arctan(·) are in radian, and that
distance to target d and object size s are measured in the same unit, this leads to the following
formulas for calculating α in deg, MOA, SMOA as well as x in rad, mrad and NATO mil based
on d and s:

• Angle α in degree: α = 360
2π · 2 · arctan

�

s
2d

�

= 360
π · arctan

�

s
2d

�

• Angle α in MOA: α = 60 · 360
π · arctan

�

s
2d

�

= 21600
π · arctan

�

s
2d

�

• Angle α in SMOA: By definition, size s = 1 inch at d = 100 yards (= 3600 inch) is 1
SMOA.

Conversion factors to/from MOA are
21600

π · arctan
�

1
7200

�

≈ 0.95493, and

π
21600 · 1

arctan(1/7200) ≈ 1.04720.

α = π
21600 · 1

arctan(1/7200) · 21600
π · arctan

�

s
2d

�

= 1
arctan(1/7200) · arctan

�

s
2d

�
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• Arc length x in rad: x = 2 · arctan
�

s
2d

�

.

• Arc length x in mrad: x = 2000 · arctan
�

s
2d

�

.

Conversion factors to/from MOA are 21600
2000π ≈ 3.43775 and 2000π

21600 ≈ 0.29089.

• Arc length x in NATO mil: x = 6400
π · arctan

�

s
2d

�

.

Conversion factors to/from MOA are 21600
6400 = 3.375 and 6400

21600 ≈ 0.2962963.

## convert object sizes in cm to MOA, distance given in m

getMOA(c(1, 2, 10), dst=100, conversion="m2cm", type="MOA")

[1] 0.3438 0.6875 3.4377

Likewise, absolute object size s can be calculated from angular size and distance to target d:

• From angle α in degree: s = 2 · d · tan
�

α · π
360

�

• From angle α in MOA: s = 2 · d · tan
�

α · π
60·360

�

= 2 · d · tan
�

α · π
21600

�

• From angle α in SMOA: s = 21600
π · arctan

�

1
7200

�

· 2 · d · tan
�

α · π
21600

�

• From arc length x in rad: s = 2 · d · tan
�

x · 1
2

�

• From arc length x in mrad: s = 2 · d · tan
�

x · 1
2000

�

• From arc length x in NATO mil: s = 2 · d · tan
�

x · π
6400

�

## convert from SMOA to object sizes in inch, distance in yard

fromMOA(c(0.5, 1, 2), dst=100, conversion="yd2in", type="SMOA")

[1] 0.5 1.0 2.0

## convert from object sizes in mm to mrad, distance in m

fromMOA(c(1, 10, 20), dst=100, conversion="m2mm", type="mrad")

[1] 100 1000 2000

Conversely, distance to target d can be calculated from absolute object size s and angular
size:

• From angle α in degree: d = s
2 · 1

tan(α·π/360)

• From angle α in MOA: d = s
2 · 1

tan(α·π/21600)

• From angle α in SMOA: d = s
2 · 1

tan(α·arctan(1/7200))

• From arc length x in rad: d = s
2 · 1

tan(x/2)

• From arc length x in mrad: d = s
2 · 1

tan(x/2000)

• From arc length x in NATO mil: d = s
2 · 1

tan(x·π/6400)
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## get distance in yard from object size in inch and angular size in MOA

getDistance(2, angular=5, conversion="yd2in", type="MOA")

[1] 38.2

## get distance in m from object size in mm and angular size in mrad

getDistance(2, angular=0.5, conversion="m2mm", type="mrad")

[1] 4

3.7.2 Less accurate calculation of angular size

Sometimes, a slightly different angular size is reported as corresponding to absolute size s at
distance d: This is the angle α′ subtended by the object if it “sits” on the line of sight (figure
5). α′ can be calculated from the right triangle with hypotenuse d and cathetus s: tan(α′) = s

d ,
therefore α′ = arctan( s

d).

If size s is small compared to distance d, the difference between the actual angular diameter α
and approximate angular size α′ is negligible, but it becomes noticeable once s gets bigger in
relation to d (figure 6).

3.8 Included data sets

The shotGroups package includes a number of empirical data sets with shooting results:

• DFlandy01, DFlandy02, DFlandy03, DFlandy04: Groups and chronograph readings from
shooting a .22LR rifle at 50 m or 50 yd (905 observations)9

• DF300BLK: One group of shooting a Noveske AR-15 rifle in 300BLK at 100 yd with factory
ammunition (20 observations)10

• DF300BLKhl: Three groups of shooting a Noveske AR-15 rifle in 300BLK at 100 yd with
handloaded ammunition (60 observations, see footnote 10)

• DFcciHV: Two groups of shooting a PWS T3 rifle in .22LR at 100 yd (40 observations, see
footnote 10)

• DFcm: Several groups of shooting a 9x19mm pistol at 25 m (487 observations)

• DFtalon: Several groups of shooting a Talon SS air rifle at 10 m (180 observations)11

• DFsavage: Several groups of shooting a Savage 12 FT/R rifle in .308 Win at distances
from 100 to 300 m (180 observations, see footnote 11)

• DFscar17: One group of shooting an FN SCAR 17 rifle in .308 Win at 100 yd (10
observations, see footnote 10)

9Thanks: Larry Landercasper & Albert Highe.
10Thanks: David Bookstaber http://ballistipedia.com/
11Thanks: Charles & Paul McMillan
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Figure 1: Distribution of radial error (red arrows) with 50% CEP (green circle) for several cases
of bivariate normal shot distributions with point of aim (POA) and true mean (point
of impact, POI). µ: center, σ: standard deviation, ρ: correlation
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Figure 2: Bivariate normal distribution with 95% confidence ellipse, sample points, 50% CEP
circle and corresponding volume under the normal surface. Left: Without systematic
bias. Right: With systematic bias.

Figure 3: Angle ϕ (degree) with corresponding arc length x (radian) in the unit circle.

Figure 4: Angular diameter of object with absolute size s at distance to target d. Right triangle
formed by d and object of size s/2. s corresponds to angle α (degree) and arc length
x (radian).
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Figure 5: Object “sits” on line of sight: right triangle formed by distance to target d and object
of size s. s corresponds to angle α′ (degree) and arc length x′ (radian).

Figure 6: Comparison between actual angular diameter α (red) and the approximate angular
size α′ (blue) as well as between arc lengths x (red) and x′ (blue) corresponding to s
at distance d.
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