
simmer: Discrete-Event Simulation for R

Iñaki Ucar

Universidad Carlos III de Madrid
Bart Smeets

dataroots
Arturo Azcorra

Universidad Carlos III de Madrid
IMDEA Networks Institute

Abstract

The simmer package brings discrete-event simulation to R. It is designed as a generic
yet powerful process-oriented framework. The architecture encloses a robust and fast
simulation core written in C++ with automatic monitoring capabilities. It provides a
rich and flexible R API that revolves around the concept of trajectory, a common path in
the simulation model for entities of the same type.
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1. Introduction

The complexity of many real-world systems involves unaffordable analytical models, and
consequently, such systems are commonly studied by means of simulation. This problem-
solving technique precedes the emergence of computers, but tool and technique got entangled
as a result of their development. As defined by Shannon (1975), simulation “is the process
of designing a model of a real system and conducting experiments with this model for the
purpose either of understanding the behavior of the system or of evaluating various strategies
(within the limits imposed by a criterion or a set of criteria) for the operation of the system.”

Different types of simulation apply depending on the nature of the system under consideration.
A common model taxonomy classifies simulation problems along three main dimensions (Law
and Kelton 2000): (i) deterministic vs. stochastic, (ii) static vs. dynamic (depending on
whether they require a time component), and (iii) continuous vs. discrete (depending on
how the system changes). For instance, Monte Carlo methods are well-known examples of
static stochastic simulation techniques. On the other hand, Discrete-event simulation (DES)
is a specific technique for modelling stochastic, dynamic and discretely evolving systems. As
opposed to continuous simulation, which typically uses smoothly-evolving equational models,
DES is characterized by sudden state changes at precise points of (simulated) time.

Customers arriving at a bank, products being manipulated in a supply chain, or packets
traversing a network are common examples of such systems. The discrete nature of a given
system arises as soon as its behavior can be described in terms of events, which is the most
fundamental concept in DES. An event is an instantaneous occurrence that may change the
state of the system, while, between events, all the state variables remain constant.

The applications of DES are vast, including, but not limited to, areas such as manufacturing
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systems, construction engineering, project management, logistics, transportation systems,
business processes, healthcare and telecommunications networks (Banks 2005). The simu-
lation of such systems provides insights into the process’ risk, efficiency and effectiveness.
Also, by simulation of an alternative configuration, one can proactively estimate the effects of
changes to the system. In turn, this allows one to get clear insights into the benefits of process
redesign strategies (e.g., extra resources). A wide range of practical applications is prompted
by this, such as analyzing bottlenecks in customer services centers, optimizing patient flows
in hospitals, testing the robustness of a supply chain or predicting the performance of a new
protocol or configuration of a telecommunications network.

There are several world views, or programming styles, for DES (Banks 2005). In the activity-
oriented approach, a model consists of sequences of activities, or operations, waiting to be
executed depending on some conditions. The simulation clock advances in fixed time in-
crements. At each step, the whole list of activities is scanned, and their conditions, verified.
Despite its simplicity, the simulation performance is too sensitive to the election of such a time
increment. Instead, the event-oriented approach completely bypasses this issue by maintain-
ing a list of scheduled events ordered by time of occurrence. Then, the simulation just consists
in jumping from event to event, sequentially executing the associated routines. Finally, the
process-oriented approach refines the latter with the addition of interacting processes, whose
activation is triggered by events. In this case, the modeller defines a set of processes, which
correspond to entities or objects of the real system, and their life cycle.

simmer (Ucar and Smeets 2019a) is a DES package for R which enables high-level process-
oriented modelling, in line with other modern simulators. But in addition, it exploits the
novel concept of trajectory: a common path in the simulation model for entities of the same
type. In other words, a trajectory consist of a list of standardized actions which defines the
life cycle of equivalent processes. This design pattern is flexible and simple to use, and takes
advantage of the chaining/piping workflow introduced by the magrittr package (Bache and
Wickham 2014).

Let us illustrate this with a simple example taken from Pidd (1988), Section 5.3.1:

Consider a simple engineering job shop that consists of several identical machines.
Each machine is able to process any job and there is a ready supply of jobs with
no prospect of any shortages. Jobs are allocated to the first available machine.
The time taken to complete a job is variable but is independent of the particular
machine being used. The machine shop is staffed by operatives who have two
tasks:

1. RESET machines between jobs if the cutting edges are still OK.
2. RETOOL those machines with cutting edges that are too worn to be reset.

In addition, an operator may be AWAY while attending to personal needs.

Figure 1 shows the activity cycle diagram for the considered system. Circles (READY,
STOPPED, OK, WAITING) represent states of the machines or the operatives respectively,
while rectangles (RUNNING, RETOOL, RESET, AWAY) represent activities that take some
(random) time to complete. Two kind of processes can be identified: shop jobs, which use
machines and degrade them, and personal tasks, which take operatives AWAY for some time.
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Figure 1: The job shop activity cycle diagram.

There is a natural way of simulating this system with simmer which consist in considering
machines and operatives as resources, and describing the life cycles of shop jobs and personal
tasks as trajectories.

First of all, let us instantiate a new simulation environment and define the completion time
for the different activities as random draws from exponential distributions. Likewise, the
interarrival times for jobs and tasks are defined (NEW_JOB, NEW_TASK), and we consider a
probability of 0.2 for a machine to be worn after running a job (CHECK_JOB).

R> library("simmer")

R> set.seed(1234)

R> (env <- simmer("Job Shop"))

simmer environment: Job Shop | now: 0 | next:

{ Monitor: in memory }

R> RUNNING <- function() rexp(1, 1)

R> RETOOL <- function() rexp(1, 2)

R> RESET <- function() rexp(1, 3)

R> AWAY <- function() rexp(1, 1)

R> CHECK_WORN <- function() runif(1) < 0.2

R> NEW_JOB <- function() rexp(1, 5)

R> NEW_TASK <- function() rexp(1, 1)

The trajectory of an incoming job starts by seizing a machine in READY state. It takes
some random time for RUNNING it after which the machine’s serviceability is checked. An
operative and some random time to RETOOL the machine may be needed, and either way an
operative must RESET it. Finally, the trajectory releases the machine, so that it is READY
again. On the other hand, personal tasks just seize operatives for some time.
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R> job <- trajectory() %>%

+ seize("machine") %>%

+ timeout(RUNNING) %>%

+ branch(

+ CHECK_WORN, continue = TRUE,

+ trajectory() %>%

+ seize("operative") %>%

+ timeout(RETOOL) %>%

+ release("operative")

+ ) %>%

+ seize("operative") %>%

+ timeout(RESET) %>%

+ release("operative") %>%

+ release("machine")

R> task <- trajectory() %>%

+ seize("operative") %>%

+ timeout(AWAY) %>%

+ release("operative")

Once the processes’ trajectories are defined, we append 10 identical machines and 5 operatives
to the simulation environment, as well as two generators for jobs and tasks.

R> env %>%

+ add_resource("machine", 10) %>%

+ add_resource("operative", 5) %>%

+ add_generator("job", job, NEW_JOB) %>%

+ add_generator("task", task, NEW_TASK) %>%

+ run(until=1000)

simmer environment: Job Shop | now: 1000 | next: 1000.09508921831

{ Monitor: in memory }

{ Resource: machine | monitored: TRUE | server status: 3(10) | queue... }

{ Resource: operative | monitored: TRUE | server status: 2(5) | queue... }

{ Source: job | monitored: 1 | n_generated: 5177 }

{ Source: task | monitored: 1 | n_generated: 995 }

The simulation has been run for 1000 units of time, and the simulator has monitored all
the state changes and lifetimes of all processes, which enables any kind of analysis without
any additional effort from the modeller’s side. For instance, we may extract a history of the
resource’s state to analyze the average number of machines/operatives in use as well as the
average number of jobs/tasks waiting for an assignment.

R> aggregate(cbind(server, queue) ~ resource, get_mon_resources(env), mean)

resource server queue

1 machine 7.987438 1.0355590

2 operative 3.505732 0.4441298
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The development of the simmer package started in the second half of 2014. The initial need
for a DES framework for R came up in projects related to process optimization in healthcare
facilities. Most of these cases involved patients following a clear trajectory through a care
process. This background is not unimportant, as it lead to the adoption and implementation
of a trajectory concept at the very core of simmer’s DES engine. This strong focus on
clearly defined trajectories is somewhat innovative and, more importantly, very intuitive.
Furthermore, this framework relies on a fast C++ simulation core to boost performance and
make DES modelling in R not only effective, but also efficient.

Over time, the simmer package has seen significant improvements and has been at the fore-
front of DES for R. Although it is the most generic DES framework, it is however not the only
R package which delivers such functionality. For example, the SpaDES package (Chubaty and
McIntire 2019) focuses on spatially explicit discrete models, and the queuecomputer package
(Ebert 2018; Ebert, Wu, Mengersen, and Ruggeri 2017) implements an efficient method for
simulating queues with arbitrary arrival and service times. Going beyond the R language, the
direct competitors to simmer are SimPy (Team SimPy 2017) and SimJulia (Lauwens 2017),
built for respectively the Python and Julia languages.

2. The simulation core design

The core of any modern discrete-event simulator comprises two main components: an event
list, ordered by time of occurrence, and an event loop that extracts and executes events. In
contrast to other interpreted languages such as Python, which is compiled by default to an
intermediate byte-code, R code is purely parsed and evaluated at runtime1. This fact makes
it a particularly slow language for DES, which consists of executing complex routines (pieces
of code associated to the events) inside a loop while constantly allocating and deallocating
objects (in the event queue).

In fact, first attempts were made in pure R by these authors, and a minimal process-based
implementation with R6 classes (Chang 2019) proved to be unfeasible in terms of performance
compared to similar approaches in pure Python. For this reason, it was decided to provide a
robust and fast simulation core written in C++. The R API interfaces with this C++ core
by leveraging the Rcpp package (Eddelbuettel and François 2011; Eddelbuettel 2013), which
has become one of the most popular ways of extending R packages with C or C++ code.

The following sections are devoted to describe the simulation core architecture. First, we
establish the DES terminology used in the rest of the paper. Then, the architectural choices
made are discussed, as well as the event queue and the simultaneity problem, an important
topic that every DES framework has to deal with.

2.1. Terminology

This document uses some DES-specific terminology, e.g., event, state, entity, process or at-
tribute. Such standard terms can be easily found in any textbook about DES (refer to Banks
(2005), for instance). There are, however, some simmer-specific terms, and some elements
that require further explanation to understand the package architecture.

1Some effort has been made in this line with the compiler package, introduced in R version 2.13.0 (Tierney
2019), furthermore, a JIT-compiler was included in R version 3.4.0.
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Resource A passive entity, as it is commonly understood in standard DES terminology.
However, simmer resources are conceived with queuing systems in mind, and therefore
they comprise two internal self-managed parts:

Server which, conceptually, represents the resource itself. It has a specified capacity
and can be seized and released.

Queue A priority queue of a certain size.

Manager An active entity, i.e., a process, that has the ability to adjust properties of a
resource (capacity and queue size) at run-time.

Source A process responsible for creating new arrivals with a given interarrival time pattern
and inserting them into the simulation model.

Arrival A process capable of interacting with resources or other entities of the simulation
model. It may have some attributes and prioritization values associated and, in general,
a limited lifetime. Upon creation, every arrival is attached to a given trajectory.

Trajectory An interlinkage of activities constituting a recipe for arrivals attached to it, i.e.,
an ordered set of actions that must be executed. The simulation model is ultimately
represented by a set of trajectories.

Activity The individual unit of action that allows arrivals to interact with resources and
other entities, perform custom routines while spending time in the system, move back
and forth through the trajectory dynamically, and much more.

2.2. Architecture

Extending an R package (or any other piece of software written in any interpreted language)
with compiled code poses an important trade-off between performance and flexibility: placing
too much functionality into the compiled part produces gains in performance, but degrades
modelling capabilities, and vice versa. The following lines are devoted to discuss how this
trade-off is resolved in simmer.

Figure 2 sketches a UML (Unified Modelling Language) description of the architecture, which
constitutes a process-based design, as in many modern DES frameworks. We draw the atten-
tion now to the C++ classes (depicted in white).

The first main component is the Simulator class. It comprises the event loop and the event
queue, which will be addressed in the next section. The Simulator provides methods for
scheduling and unscheduling events. Moreover, it is responsible for managing simulation-wide
entities (e.g., resources and arrival sources) and facilities (e.g., signaling between processes
and batches) through diverse C++ unordered maps:

• Maps of resources and processes (sources, arrivals and managers) by name.
• A map of pending events, which allows to unschedule a given process.
• Maps of signals subscribed by arrivals and handlers defined for different signals.
• Maps for forming batches of arrivals, named and unnamed.
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Figure 2: UML diagram of the simulation core architecture. Blue classes represent how R

encapsulates the C++ core. Blue circles represent how C++ interfaces with R.

This class also holds global attributes and monitoring information. Thus, monitoring counters,
which are derived from the Monitor class, are centralized, and they register every change of
state produced during the simulation time. There are five types of built-in changes of state
that are recorded by calling Monitor’s record_*() methods:

• An arrival is accepted into a resource (served or enqueued). The resource notifies about
the new status of its internal counters.

• An arrival leaves a resource. The resource notifies the new status of its internal counters,
and the arrival notifies start, end and activity times in that particular resource.

• A resource is modified during runtime (i.e., a change in the capacity or queue size). The
resource notifies the new status of its internal counters.

• An arrival modifies an attribute, one of its own or a global one. The arrival notifies the
new value.

• An arrival leaves its trajectory by exhausting the activities associated (considered as
finished) or because of another reason (non-finished, e.g., it is rejected from a resource).
The arrival notifies global start, end and activity times.

As mentioned in the previous section, there are two types of entities: passive ones (Resource)
and active ones (processes Source, Arrival and Manager). Sources create new arrivals, and
the latter are the main actors of the simulation model. Managers can be used for dynamically
changing the properties of a resource (capacity and queue size). All processes share a run()

method that is invoked by the event loop each time a new event is extracted from the event
list.

There is a fourth kind of process not shown in Figure 2, called Task. It is a generic process
that executes a given function once, and it is used by arrivals, resources, activities and the
simulator itself to trigger dynamic actions or split up events. A Task is for instance used
under the hood to trigger reneging or to broadcast signals after some delay.
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The last main component, completely isolated from the Simulator, is the Activity class.
This abstract class represents a clonable object, chainable in a double-linked list to form
trajectories. Most of the activities provided by simmer derive from it. Fork is another
abstract class (not depicted in Figure 2) which is derived from Activity. Any activity
supporting the definition of sub-trajectories must derive from this one instead, such as Seize,
Branch or Clone. All the activities must implement the virtual methods print() and run().

Finally, it is worth mentioning the couple of blue circles depicted in Figure 2. They represent
the points of presence of R in the C++ core, i.e., where the core interfaces back with R to
execute custom user-defined code.

In summary, the C++ core is responsible for all the heavy tasks, i.e., managing the event
loop, the event list, generic resources and processes, collecting all the statistics, and so on.
And still, it provides enough flexibility to the user for modelling the interarrival times from
R and execute any custom user-defined code through the activities.

2.3. The event queue

The event queue is the most fundamental part of any DES software. It is responsible for
maintaining a list of events to be executed by the event loop in an ordered fashion by time of
occurrence. This last requirement establishes the need for a data structure with a low access,
search, insertion and deletion complexity. A binary tree is a well-known data structure that
satisfies these properties, and it is commonly used for this purpose. Unfortunately, binary
trees, or equivalent structures, cannot be efficiently implemented without pointers, and this
is the main reason why pure R is very inefficient for DES.

In simmer, the event queue is defined as a C++ multiset, a kind of associative container
implemented as a balanced tree internally. Apart from the efficiency, it was selected to
support event unscheduling through iterators. Each event holds a pointer to a process, which
will be retrieved and run in the event loop. Events are inserted in the event queue ordered
by 1) time of occurrence and 2) priority. This secondary order criterion is devoted to solve a
common issue for DES software called the simultaneity problem.

The simultaneity problem

As noted by Rönngren and Liljenstam (1999), Jha and Bagrodia (2000), there are many
circumstances from which simultaneous events (i.e., events with the same timestamp) may
arise. How they are handled by a DES framework has critical implications on reproducibility
and simulation correctness.

As an example of the implications, let us consider an arrival seizing a resource at time ti−1,
which has capacity=1 and queue_size=0. At time ti, two simultaneous events happen: 1)
the resource is released, and 2) another arrival tries to seize the resource. It is indisputable
what should happen in this situation: the new arrival seizes the resource while the other
continues its path. But note that if 2) is executed before 1), the new arrival is rejected (!).
Therefore, it is obvious that release events must always be executed before seize events.

If we consider a dynamically managed resource (i.e., its capacity changes over time) and,
instead of the event 1) in the previous example, the manager increases the capacity of the
resource, we are in the very same situation. Again, it is obvious that resource managers must
be executed before seize attempts.
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A further analysis reveals that, in order to preserve correctness and prevent a simulation
crash, it is necessary to break down resource releases in two parts with different priorities:
the release in itself and a post-release event that tries to serve another arrival from the queue.
Thus, every resource manager must be executed after releases and before post-releases. This
and other issues are solved with a priority system (see Table 1) embedded in the event list
implementation that provides a deterministic and consistent execution of simultaneous events.

Table 1: Priority system (in decreasing order) and events associated.

Priority Event

PRIORITY_MAX Terminate arrivals
PRIORITY_RELEASE Resource release
PRIORITY_MANAGER Manager action (e.g., resource capacity change)
PRIORITY_RELEASE_POST Resource post-release (i.e., serve from the queue)
. . . General activities
PRIORITY_MIN Other tasks (e.g., new arrivals, timers. . . )

3. The simmer API

The R API exposed by simmer comprises two main elements: the simmer environment (or
simulation environment) and the trajectory object, which are depicted in Figure 2 (blue
classes). As we will see throughout this section, simulating with simmer simply consists of
building a simulation environment and one or more trajectories. For this purpose, the API
is composed of verbs and actions that can be chained together. For easy-of-use, these have
been made fully compatible with the pipe operator (%>%) from the magrittr package.

3.1. The trajectory object

A trajectory can be defined as a recipe and consists of an ordered set of activities. The idea
behind this concept is very similar to the idea behind dplyr for data manipulation (Wickham,
François, and Müller 2019). To borrow the words of H. Wickham, “by constraining your
options, it simplifies how you can think about” discrete-event modelling. Activities are verbs
that correspond to common functional DES blocks.

The trajectory() method instantiates the object, and activities can be appended using the
%>% operator:

R> traj0 <- trajectory() %>%

+ log_("Entering the trajectory") %>%

+ timeout(10) %>%

+ log_("Leaving the trajectory")

The trajectory above illustrates the two most basic activities available: displaying a message
(log_()) and spending some time in the system (timeout()). An arrival attached to this
trajectory will execute the activities in the given order, i.e., it will display “Entering the
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trajectory”, then it will spend 10 units of (simulated) time, and finally it will display “Leaving
the trajectory”.

The example uses fixed parameters: a string and a numeric value respectively. However, at
least the main parameter for all activities (this is specified in the documentation) can also be
what we will call a dynamical parameter, i.e., a function. This thus, although not quite useful
yet, is also valid:

R> traj1 <- trajectory() %>%

+ log_(function() "Entering the trajectory") %>%

+ timeout(function() 10) %>%

+ log_(function() "Leaving the trajectory")

Also, trajectories can be split apart, joined together and modified:

R> traj2 <- join(traj0[c(1, 3)], traj0[2])

R> traj2[1] <- traj2[3]

R> traj2

trajectory: anonymous, 3 activities

{ Activity: Timeout | delay: 10 }

{ Activity: Log | message: Leaving th..., level: 0 }

{ Activity: Timeout | delay: 10 }

There are many activities available. We will briefly review them by categorizing them into
different topics.

Arrival properties

Arrivals are able to store attributes and modify these using set_attribute(). Attributes
consist of pairs (key, value) (character and numeric respectively) which by default are set
per arrival unless they are defined as global. As we said before, all activities support at
least one dynamical parameter. In the case of set_attribute(), both arguments, keys and
values, can be vectors or functions returning vectors.

Attributes can be retrieved in any R function by calling get_attribute(), whose first argu-
ment must be a simmer object. For instance, the following trajectory prints 81:

R> env <- simmer()

R> traj <- trajectory() %>%

+ set_attribute("weight", 80) %>%

+ set_attribute("weight", 1, mod="+") %>%

+ log_(function() paste0("My weight is ", get_attribute(env, "weight")))

Arrivals also hold a set of three prioritization values for accessing resources:

priority A higher value equals higher priority. The default value is the minimum priority,
which is 0.
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preemptible If a preemptive resource is seized, this parameter establishes the minimum
incoming priority that can preempt this arrival (the activity is interrupted and another
arrival with a priority greater than preemptible gains the resource). In any case,
preemptible must be equal or greater than priority, and thus only higher priority
arrivals can trigger preemption.

restart Whether the ongoing activity must be restarted after being preempted.

These three values are established for all the arrivals created by a particular source, but they
can also be dynamically changed on a per-arrival basis using the set_prioritization() and
get_prioritization() activities, in the same way as attributes.

Interaction with resources

The two main activities for interacting with resources are seize() and release(). In their
most basic usage, they seize/release a given amount of a resource specified by name. It is also
possible to change the properties of the resource with set_capacity() and set_queue_size().

The seize() activity is special in the sense that the outcome depends on the state of the
resource. The arrival may successfully seize the resource and continue its path, but it may
also be enqueued or rejected and dropped from the trajectory. To handle these special cases
with total flexibility, seize() supports the specification of two optional sub-trajectories:
post.seize, which is followed after a successful seize, and reject, followed if the arrival
is rejected. As in every activity supporting the definition of sub-trajectories, there is a
boolean parameter called continue. For each sub-trajectory, it controls whether arrivals
should continue to the activity following the seize() in the main trajectory after executing
the sub-trajectory.

R> patient <- trajectory() %>%

+ log_("arriving...") %>%

+ seize(

+ "doctor", 1, continue = c(TRUE, FALSE),

+ post.seize = trajectory("accepted patient") %>%

+ log_("doctor seized"),

+ reject = trajectory("rejected patient") %>%

+ log_("rejected!") %>%

+ seize("nurse", 1) %>%

+ log_("nurse seized") %>%

+ timeout(2) %>%

+ release("nurse", 1) %>%

+ log_("nurse released")) %>%

+ timeout(5) %>%

+ release("doctor", 1) %>%

+ log_("doctor released")

R> env <- simmer() %>%

+ add_resource("doctor", capacity = 1, queue_size = 0) %>%

+ add_resource("nurse", capacity = 10, queue_size = 0) %>%

+ add_generator("patient", patient, at(0, 1)) %>%

+ run()



12 simmer: Discrete-Event Simulation for R

0: patient0: arriving...

0: patient0: doctor seized

1: patient1: arriving...

1: patient1: rejected!

1: patient1: nurse seized

3: patient1: nurse released

5: patient0: doctor released

The value supplied to all these methods may be a dynamical parameter. On the other hand,
the resource name must be fixed. There is a special mechanism to select resources dynamically:
the select() activity. It marks a resource as selected for an arrival executing this activity
given a set of resources and a policy. There are several policies implemented internally
that can be accessed by name:

shortest-queue The resource with the shortest queue is selected.
round-robin Resources will be selected in a cyclical nature.
first-available The first available resource is selected.
random A resource is randomly selected.

Its resources parameter is allowed to be dynamical, and there is also the possibility of
defining custom policies. Once a resource is selected, there are special versions of the
aforementioned activities for interacting with resources without specifying its name, such
as seize_selected(), set_capacity_selected() and so on.

Interaction with sources

There are four activities specifically intended to modify arrival sources. An arrival may
activate() or deactivate() a source, but also modify with set_trajectory() the tra-
jectory to which it attaches the arrivals created, or set a new interarrival distribution with
set_source(). For dynamically selecting a source, the parameter that specifies the source
name in all these methods can be dynamical.

R> traj <- trajectory() %>%

+ deactivate("dummy") %>%

+ timeout(1) %>%

+ activate("dummy")

R> simmer() %>%

+ add_generator("dummy", traj, function() 1) %>%

+ run(10) %>%

+ get_mon_arrivals()

name start_time end_time activity_time finished replication

1 dummy0 1 2 1 TRUE 1

2 dummy1 3 4 1 TRUE 1

3 dummy2 5 6 1 TRUE 1

4 dummy3 7 8 1 TRUE 1
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Branching

A branch is a point in a trajectory in which one or more sub-trajectories may be followed.
Two types of branching are supported in simmer. The branch() activity places the arrival in
one of the sub-trajectories depending on some condition evaluated in a dynamical parameter
called option. It is the equivalent of an if/else in programming, i.e., if the value of option

is i, the i-th sub-trajectory will be executed. On the other hand, the clone() activity is a
parallel branch. It does not take any option, but replicates the arrival n-1 times and places
each one of them into the n sub-trajectories supplied.

R> env <- simmer()

R> traj <- trajectory() %>%

+ branch(

+ option = function() round(now(env)), continue = c(FALSE, TRUE),

+ trajectory() %>% log_("branch 1"),

+ trajectory() %>% log_("branch 2")) %>%

+ clone(

+ n = 2,

+ trajectory() %>% log_("clone 0"),

+ trajectory() %>% log_("clone 1")) %>%

+ synchronize(wait = TRUE) %>%

+ log_("out")

R> env %>%

+ add_generator("dummy", traj, at(1, 2)) %>%

+ run() %>% invisible

1: dummy0: branch 1

2: dummy1: branch 2

2: dummy1: clone 0

2: dummy1: clone 1

2: dummy1: out

Note that clone() is the only exception among all activities supporting sub-trajectories that
does not accept a continue parameter. By default, all the clones continue in the main
trajectory after this activity. To remove all of them except for one, the synchronize()

activity may be used.

Loops

There is a mechanism, rollback(), for going back in a trajectory and thus executing loops
over a number of activities. This activity causes the arrival to step back a given amount of
activities (that can be dynamical) a number of times. If a check function returning a boolean
is supplied, the times parameter is ignored and the arrival determines whether it must step
back each time it hits the rollback.
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R> hello <- trajectory() %>%

+ log_("Hello!") %>%

+ timeout(1) %>%

+ rollback(amount = 2, times = 2)

R> simmer() %>%

+ add_generator("hello_sayer", hello, at(0)) %>%

+ run() %>% invisible

0: hello_sayer0: Hello!

1: hello_sayer0: Hello!

2: hello_sayer0: Hello!

Batching

Batching consists of collecting a number of arrivals before they can continue their path in the
trajectory as a unit2. This means that if, for instance, 10 arrivals in a batch try to seize a
unit of a certain resource, only one unit may be seized, not 10. A batch may be splitted with
separate(), unless it is marked as permanent.

R> roller <- trajectory() %>%

+ batch(10, timeout = 5, permanent = FALSE) %>%

+ seize("rollercoaster", 1) %>%

+ timeout(5) %>%

+ release("rollercoaster", 1) %>%

+ separate()

By default, all the arrivals reaching a batch are joined into it, and batches wait until the
specified number of arrivals are collected. Nonetheless, arrivals can avoid joining the batch
under any constraint if an optional function returning a boolean, rule, is supplied. Also, a
batch may be triggered before collecting a given amount of arrivals if some timeout is speci-
fied. Note that batches are shared only by arrivals directly attached to the same trajectory.
Whenever a globally shared batch is needed, a common name must be specified.

Asynchronous programming

There are a number of methods enabling asynchronous events. The send() activity broad-
casts one or more signals to all the arrivals subscribed to them. Signals can be triggered
immediately or after some delay. In this case, both parameters, signals and delay, can be
dynamical. Arrivals are able to block and wait() until a certain signal is received.

Arrivals can subscribe to signals and (optionally) assign a handler using the trap() activity.
Upon a signal reception, the arrival stops the current activity and executes the handler3 if

2A concrete example of this is the case where a number of people (the arrivals) together take, or rather
seize, an elevator (the resource).

3The handler parameter accepts a trajectory object. Once the handler gets called, it will route the arrival
to this sub-trajectory.
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provided. Then, the execution returns to the activity following the point of interruption.
Nonetheless, trapped signals are ignored when the arrival is waiting in a resource’s queue.
The same applies inside a batch: all the signals subscribed before entering the batch are
ignored. Finally, the untrap() activity can be used to unsubscribe from signals.

R> t_blocked <- trajectory() %>%

+ trap(

+ "you shall pass",

+ handler = trajectory() %>%

+ log_("got a signal!")) %>%

+ log_("waiting...") %>%

+ wait() %>%

+ log_("continuing!")

R> t_signal <- trajectory() %>%

+ log_("you shall pass") %>%

+ send("you shall pass")

R> simmer() %>%

+ add_generator("blocked", t_blocked, at(0)) %>%

+ add_generator("signaler", t_signal, at(5)) %>%

+ run() %>% invisible

0: blocked0: waiting...

5: signaler0: you shall pass

5: blocked0: got a signal!

5: blocked0: continuing!

By default, signal handlers may be interrupted as well by other signals, meaning that a
handler may keep restarting if there are frequent enough signals being broadcasted. If an
uninterruptible handler is needed, this can be achieved by setting the flag interruptible

to FALSE in trap().

Reneging

Besides being rejected while trying to seize a resource, arrivals are also able to leave the
trajectory at any moment, synchronously or asynchronously. Namely, reneging means that
an arrival abandons the trajectory at a given moment. The most simple activity enabling
this is leave, which immediately triggers the action given some probability. Furthermore,
renege_in() and renege_if() trigger reneging asynchronously after some timeout t or if
a signal is received respectively, unless the action is aborted with renege_abort(). Both
renege_in() and renege_if() accept an optional sub-trajectory, out, that is executed right
before leaving.

R> bank <- trajectory() %>%

+ log_("Here I am") %>%

+ renege_in(
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+ 5, out = trajectory() %>%

+ log_("Lost my patience. Reneging...")) %>%

+ seize("clerk", 1) %>%

+ renege_abort() %>%

+ log_("I’m being attended") %>%

+ timeout(10) %>%

+ release("clerk", 1) %>%

+ log_("Finished")

R> simmer() %>%

+ add_resource("clerk", 1) %>%

+ add_generator("customer", bank, at(0, 1)) %>%

+ run() %>% invisible

0: customer0: Here I am

0: customer0: I’m being attended

1: customer1: Here I am

6: customer1: Lost my patience. Reneging...

10: customer0: Finished

3.2. The simulation environment

The simulation environment manages resources and sources, and controls the simulation exe-
cution. The simmer() method instantiates the object, after which resources and sources can
be appended using the %>% operator:

R> env <- simmer() %>%

+ add_resource("res_name", 1) %>%

+ add_generator("arrival", traj0, function() 25) %>%

+ print()

simmer environment: anonymous | now: 0 | next: 0

{ Monitor: in memory }

{ Resource: res_name | monitored: TRUE | server status: 0(1) | queue... }

{ Source: arrival | monitored: 1 | n_generated: 0 }

Then, the simulation can be executed, or run(), until a stop time:

R> env %>% run(until=30)

25: arrival0: Entering the trajectory

simmer environment: anonymous | now: 30 | next: 35

{ Monitor: in memory }

{ Resource: res_name | monitored: TRUE | server status: 0(1) | queue... }

{ Source: arrival | monitored: 1 | n_generated: 2 }
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There are a number of methods for extracting information, such as the simulation time
(now()), future scheduled events (peek()), and getters for obtaining resources’ and sources’
parameters (capacity, queue size, server count and queue count; number of arrivals generated
so far). There are also several setters available for resources and sources (capacity, queue size;
trajectory, distribution).

A simmer object can be reset() and re-run. However, there is a special method, wrap(),
intended to extract all the information from the C++ object encapsulated into a simmer

environment and to deallocate that object. Thus, most of the getters work also when applied
to wrapped environments, but such an object cannot be reset or re-run anymore.

Resources

A simmer resource, as stated in Section 2.1, comprises two internal self-managed parts: a
server and a priority queue. Three main parameters define a resource: name of the resource,
capacity of the server and queue_size (0 means no queue). Resources are monitored and
non-preemptive by default. Preemption means that if a high priority arrival becomes eligible
for processing, the resource will temporarily stop the processing of one (or more) of the lower
priority arrivals being served. For preemptive resources, the preempt_order defines which
arrival should be stopped first if there are many lower priority arrivals, and it assumes a first-
in-first-out (FIFO) policy by default. Any preempted arrival is enqueued in a dedicated queue
that has a higher priority over the main one (i.e., it is served first). The queue_size_strict

parameter controls whether this dedicated queue must be taken into account for the queue
size limit, if any. If this parameter enforces the limit, then rejection may occur in the main
queue.

Sources

Three main parameters define a source: a name_prefix for each generated arrival, a trajectory
to attach them to and a source of interarrival times. A monitoring flag accepts several levels
in this case to support arrival monitoring (default) and, additionally, attribute monitoring.

There are two kinds of source: generators and data sources. A generator (add_generator

method, as depicted in many examples throughout this article) is a dynamic source that draws
interarrival times from a user-provided function. The add_dataframe method allows the user
to set up a data source which draws arrivals from a provided data frame. The former is the
most versatile source, but the latter facilitates the attachment of pre-existent or pre-computed
data with attributes that are automatically initialised on arrival creation.

In the case of generators, the interarrival distribution must return one or more interarrival
times for each call. Internally, generators create as many arrivals as values returned by this
function. Whenever a negative interarrival value is obtained, the generator stops. In the case
of data sources, they draw arrivals from the data provided in batches. Both generators and
data sources re-schedule themselves with a delay equal to the sum of the values obtained to
produce the next batch.

3.3. Monitoring and data retrieval

There are three methods for obtaining monitored data (if any) about arrivals, resources and
attributes. They can be applied to a single simulation environment or to a list of environments,
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and the returning object is always a data frame, even if no data was found. Each processed
simulation environment is treated as a different replication, and a numeric column named
replication is added to every returned data frame with environment indexes as values.

get_mon_arrivals() Returns timing information per arrival: name of the arrival, start_time,
end_time, activity_time (time not spent in resource queues) and a flag, finished,
that indicates whether the arrival exhausted its activities (or was rejected). By default,
this information is referred to the arrivals’ entire lifetime, but it may be obtained on a
per-resource basis by specifying per_resource=TRUE.

get_mon_resources() Returns state changes in resources: resource name, time instant
of the event that triggered the state change, server count, queue count, capacity,
queue_size, system count (server + queue) and system limit (capacity + queue_size).

get_mon_attributes() Returns state changes in attributes: name of the attribute, time

instant of the event that triggered the state change, name of key that identifies the
attribute and value.

4. Modelling with simmer

The following sections aim to provide some basic modelling examples. The topics addressed
are queuing systems, replication, parallelization and some best practices. We invite the
reader to learn about a broader selection of activities and modelling techniques available in
the package vignettes, which cover the use of attributes, loops, batching, branching, shared
events, reneging and advanced uses of resources among others.

4.1. Queuing systems

The concept of trajectory developed in simmer emerges as a natural way to simulate a wide
range of problems related to Continuous-Time Markov Chains (CTMC), and more specifically
to the so-called birth-death processes and queuing systems. Indeed, simmer not only provides
very flexible resources (with or without queue), branches, delays and arrival sources, but they
are bundled in a very comprehensive framework of verbs that can be chained with the pipe
operator. Let us explore the expressiveness of a simmer trajectory using a traditional queuing
example: the M/M/1. The package vignettes include further examples on M/M/c/k systems,
queueing networks and CTMC models.

In Kendall’s notation (Kendall 1953), an M/M/1 system has exponential arrivals (M/M/1), a
single server (M/M/1) with exponential service time (M/M/1) and an infinite queue (implicit
M/M/1/∞). For instance, people arriving at an ATM at rate λ, waiting their turn in the
street and withdrawing money at rate µ. These are the basic parameters of the system,
whenever ρ < 1:

ρ =
λ

µ
≡ Server utilization (1)

N =
ρ

1 − ρ
≡ Average number of customers in the system (queue + server) (2)

T =
N

λ
≡ Average time in the system (queue + server) [Little’s law] (3)
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If ρ ≥ 1, it means that the system is unstable: there are more arrivals than the server
is capable of handling and the queue will grow indefinitely. The simulation of an M/M/1
system is quite simple using simmer:

R> set.seed(1234)

R> lambda <- 2

R> mu <- 4

R> rho <- lambda/mu

R> mm1.traj <- trajectory() %>%

+ seize("mm1.resource", amount=1) %>%

+ timeout(function() rexp(1, mu)) %>%

+ release("mm1.resource", amount=1)

R> mm1.env <- simmer() %>%

+ add_resource("mm1.resource", capacity=1, queue_size=Inf) %>%

+ add_generator("arrival", mm1.traj, function() rexp(1, lambda)) %>%

+ run(until=2000)

After the parameter setup, the first code block defines the trajectory: each arrival will seize the
resource, wait some exponential random time (service time) and release the resource. The
second code block instantiates the simulation environment, creates the resource, attaches
an exponential generator to the trajectory and runs the simulation for 2000 units of time.
Note that trajectories can be defined independently of the simulation environment, but it is
recommended to instantiate the latter in the first place, so that trajectories are able to extract
information from it (e.g., the simulation time).

As a next step, we could extract the monitoring information and perform some analyses.
The extension package simmer.plot (Ucar and Smeets 2019b) provides convenience plotting
methods to, for instance, quickly visualize the usage of a resource over time. Figure 3 gives a
glimpse of this simulation using this package. In particular, it shows that the average number
of customers in the system converges to the theoretical value given by Equation 2.

4.2. Replication and parallelization

Typically, running a certain simulation only once is useless. In general, we will be interested
in replicating the model execution many times, maybe with different initial conditions, and
then perform some statistical analysis over the output. This can be easily achieved using
standard R tools, e.g., lapply() or similar functions.

Additionally, we can leverage the parallelized version of lapply(), mclapply(), provided by
the parallel package (R Core Team 2019), to speed up this process. Unfortunately, paral-
lelization has the shortcoming that we lose the underlying C++ objects when each thread
finishes. To avoid losing the monitored data, the wrap() method can be used to extract and
wrap these data into a pure R object before the C++ object is garbage-collected.

The following example uses mclapply() and wrap() to perform 100 replicas of the M/M/1
simulation from the previous section (note that the trajectory is not redefined):
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Figure 3: Detail of the resource usage.

R> library("parallel")

R> set.seed(1234)

R> mm1.envs <- mclapply(1:100, function(i) {

+ simmer() %>%

+ add_resource("mm1.resource", capacity=1, queue_size=Inf) %>%

+ add_generator("arrival", mm1.traj, function() rexp(100, lambda)) %>%

+ run(until=1000/lambda) %>% wrap()

+ }, mc.set.seed=FALSE)

With all these replicas, we could, for instance, perform a t-test over N , the average number
of customers in the system:

R> mm1.data <- get_mon_arrivals(mm1.envs) %>%

+ aggregate(end_time - start_time ~ replication, data=., mean)

R> t.test(mm1.data[[2]])

One Sample t-test

data: mm1.data[[2]]

t = 94.883, df = 99, p-value < 2.2e-16

alternative hypothesis: true mean is not equal to 0

95 percent confidence interval:

0.4925143 0.5135535

sample estimates:

mean of x

0.5030339



Iñaki Ucar, Bart Smeets, Arturo Azcorra 21

4.3. Best practices

DES modelling can be done in an event-by-event basis, but this approach is fairly tedious
and mostly unpractical. Instead, modern process-oriented approaches commonly relate to
the identification of resources and processes in a given problem, and the interactions between
them. The simmer package internally follows this paradigm and exposes generic resources
and processes (arrivals, in simmer terminology), so that the user can implement all the
interactions as action sequences (trajectories).

There are usually multiple valid ways of mapping the identified resources and processes into
the elements exposed by the simmer API. For example, let us suppose that we would like to
model an alarm clock beeping every second. In this case, the beep may be identified as a
process, so that we have different beeps (multiple arrivals) entering a beep trajectory once
per second:

R> beep <- trajectory() %>%

+ log_("beeeep!")

R> env <- simmer() %>%

+ add_generator("beep", beep, function() 1) %>%

+ run(2.5)

1: beep0: beeeep!

2: beep1: beeeep!

But instead, identifying the alarm clock as the process is equally valid, and then we have a
single alarm (single arrival) producing all the beeps in a loop:

R> alarm <- trajectory() %>%

+ timeout(1) %>%

+ log_("beeeep!") %>%

+ rollback(2)

R> env <- simmer() %>%

+ add_generator("alarm", alarm, at(0)) %>%

+ run(2.5)

1: alarm0: beeeep!

2: alarm0: beeeep!

These are two common design patterns in simmer for which the outcome is the same, although
there are subtle differences that depend on the problem being considered and the monitoring
requirements. Furthermore, as a model becomes more complex and detailed, the resulting
mapping and syntax may become more artificious. These issues are shared in different ways
by other frameworks as well, such as SimPy, and arise due to their generic nature.

Furthermore, the piping mechanism used in the simmer API may invite the user to produce
large monolithic trajectories. However, it should be noted that it is usually better to break
them down into small manageable pieces. For instance, the following example parameterizes
the access to a resource, where G refers to arbitrary service times, and n servers are seized.
Then, it is used to instantiate the trajectory shown in the former M/M/1 example:
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R> xgn <- function(resource, G, n)

+ trajectory() %>%

+ seize(resource, n) %>%

+ timeout(G) %>%

+ release(resource, n)

R> (mm1.traj <- xgn("mm1.resource", function() rexp(1, mu), 1))

trajectory: anonymous, 3 activities

{ Activity: Seize | resource: mm1.resource, amount: 1 }

{ Activity: Timeout | delay: function() }

{ Activity: Release | resource: mm1.resource, amount: 1 }

Standard R tools (lapply() and the like) may also be used to generate large lists of trajectories
with some variations. These small pieces can be concatenated together into longer trajectories
using join(), but at the same time, they allow for multiple points of attachment of arrivals.

During a simulation, trajectories can interact with the simulation environment in order to
extract or modify parameters of interest such as the current simulation time, attributes,
status of resources (get the number of arrivals in a resource, get or set resources’ capacity or
queue size), or status of sources (get the number of generated arrivals, set sources’ attached
trajectory or distribution). The only requirement is that the simulation object must be defined
in the same R environment (or a parent one) before the simulation is started. Effectively, it is
enough to detach the run() method from the instantiation (simmer()), namely, they should
not be called in the same pipe. But, for the sake of consistency, it is a good coding practice
to instantiate the simulation object always in the first place as follows:

R> set.seed(1234)

R> env <- simmer()

R> traj <- trajectory() %>%

+ log_(function() paste0("Current simulation time: ", now(env)))

R> env <- env %>%

+ add_generator("dummy", traj, at(rexp(1, 1))) %>%

+ run()

2.50176: dummy0: Current simulation time: 2.50175860496223

5. Performance evaluation

This section investigates the performance of simmer with the aim of assessing its usability
as a general-purpose DES framework. A first section is devoted to measuring the simulation
time of a simple model relative to SimPy and SimJulia. The reader may find interesting to
compare the expressiveness of each framework. Last but not least, the final section explores
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the cost of calling R from C++, revealing the existent trade-off, inherent to the design of this
package, between performance and model complexity.

All the subsequent tests were performed under Fedora Linux 25 running on an Intel Core2
Quad CPU Q8400, with R 3.3.3, Python 2.7.13, SimPy 3.0.9, Julia 0.5.1 and SimJulia 0.3.14
installed from the default repositories. Absolute execution times presented here are specific
to this platform and configuration, and thus they should not be taken as representative for
any other system. Instead, the relative performance should be approximately constant across
different systems.

5.1. Comparison with similar frameworks

A significant effort has been put into the design of simmer in order to make it performant
enough to run general and relatively large simulation models in a reasonable amount of
time. In this regard, a relevant comparison can be made against other general-purpose DES
frameworks such as SimPy and SimJulia. To this effect, we retake the M/M/1 example from
Section 4.1, which can be bundled into the following test:

R> test_mm1_simmer <- function(n, m, mon=FALSE) {

+ mm1 <- trajectory() %>%

+ seize("server", 1) %>%

+ timeout(function() rexp(1, 1.1)) %>%

+ release("server", 1)

+ env <- simmer() %>%

+ add_resource("server", 1, mon=mon) %>%

+ add_generator("customer", mm1, function() rexp(m, 1), mon=mon) %>%

+ run(until=n)

+ }

With the selected arrival rate, λ = 1, this test simulates an average of n arrivals entering a
nearly saturated system (ρ = 1/1.1). Given that simmer generators are able to create arrivals
in batches (i.e., more than one arrival for each function call) for improved performance, the
parameter m controls the size of the batch. Finally, the mon flag enables or disables monitoring.

Let us build now the equivalent model using SimPy, with base Python for random num-
ber generation. We prepare the Python benchmark from R using the rPython package (Gil
Bellosta 2015) as follows:

R> rPython::python.exec("

+ import simpy, random, time

+

+ def test_mm1(n):

+ def exp_source(env, lambd, server, mu):

+ while True:

+ dt = random.expovariate(lambd)

+ yield env.timeout(dt)

+ env.process(customer(env, server, mu))

+ def customer(env, server, mu):
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+ with server.request() as req:

+ yield req

+ dt = random.expovariate(mu)

+ yield env.timeout(dt)

+ env = simpy.Environment()

+ server = simpy.Resource(env, capacity=1)

+ env.process(exp_source(env, 1, server, 1.1))

+ env.run(until=n)

+

+ def benchmark(n, times):

+ results = []

+ for i in range(0, times):

+ start = time.time()

+ test_mm1(n)

+ results.append(time.time() - start)

+ return results

+ ")

Equivalently, this can be done for Julia and SimJulia using the rjulia package (Gong 2017).4

Once more, n controls the number of arrivals simulated on average:

R> rjulia::julia_init()

R> rjulia::julia_void_eval("

+ using SimJulia, Distributions

+

+ function test_mm1(n::Float64)

+ function exp_source(env::Environment, lambd::Float64,

+ server::Resource, mu::Float64)

+ while true

+ dt = rand(Exponential(1/lambd))

+ yield(Timeout(env, dt))

+ Process(env, customer, server, mu)

+ end

+ end

+ function customer(env::Environment, server::Resource, mu::Float64)

+ yield(Request(server))

+ dt = rand(Exponential(1/mu))

+ yield(Timeout(env, dt))

+ yield(Release(server))

+ end

+ env = Environment()

+ server = Resource(env, 1)

+ Process(env, exp_source, 1.0, server, 1.1)

+ run(env, n)

4Note that the code provided does not work on recent versions of Julia and SimJulia An analogous standalone
replication script for more recent versions is supplied in the supplementary materials.
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+ end

+

+ function benchmark(n::Float64, times::Int)

+ results = Float64[]

+ test_mm1(n)

+ for i = 1:times

+ push!(results, @elapsed test_mm1(n))

+ end

+ return(results)

+ end

+ ")

It can be noted that in both cases there is no monitoring involved, because either SimPy

nor SimJulia provide automatic monitoring as simmer does. Furthermore, the resulting code
for simmer is more concise and expressive than the equivalent ones for SimPy and SimJulia,
which are very similar.

We obtain the reference benchmark with n=1e4 and 20 replicas for both packages as follows:

R> n <- 1e4L

R> times <- 20

R> ref <- data.frame(

+ SimPy = rPython::python.call("benchmark", n, times),

+ SimJulia = rjulia::j2r(paste0("benchmark(", n, ".0, ", times, ")")))

As a matter of fact, we also tested a small DES skeleton in pure R provided in (Matloff 2011,
7.8.3 Extended Example: Discrete-Event Simulation in R). This code was formalized into an
R package called DES, available on GitHub5 since 2014. The original code implemented the
event queue as an ordered vector which was updated by performing a binary search. Thus, the
execution time of this version was two orders of magnitude slower than the other frameworks.
The most recent version on GitHub (as of 2017) takes another clever approach though: it
supposes that the event vector will be short and approximately ordered; therefore, the event
vector is not sorted anymore, and the next event is found using a simple linear search. These
assumptions hold for many cases, and particularly for this M/M/1 scenario. As a result, the
performance of this model is only ∼ 2.2 times slower than SimPy. Still, it is clear that pure R

cannot compete with other languages in discrete-event simulation, and DES is not considered
in our comparisons hereafter.

Finally, we set a benchmark for simmer using microbenchmark, again with n=1e4 and 20
replicas for each test. Figure 4a shows the output of this benchmark. simmer is tested
both in monitored and in non-monitored mode. The results show that the performance of
simmer is equivalent to SimPy and SimJulia. The non-monitored simmer shows a slightly
better performance than these frameworks, while the monitored simmer shows a slightly worse
performance.

At this point, it is worth highlighting simmer’s ability to generate arrivals in batches (hence
parameter m). To better understand the impact of batched arrival generation, the bench-
mark was repeated over a range of m values (1, . . . , 100). The results of the batched arrival

5https://github.com/matloff/des

https://github.com/matloff/des
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Figure 4: Performance comparison.

generation runs are shown in Figure 4b. This plot depicts the average execution time of the
simmer model with (red) and without (blue) monitoring as a function of the generator batch
size m. The black dashed line sets the average execution time of the SimPy model to serve
as a reference.

The performance with m=1 corresponds to what has been shown in Figure 4a. But as m
increases, simmer performance quickly improves and becomes ∼ 1.6 to 1.9 times faster than
SimPy. Surprisingly, there is no additional gain with batches greater than 40-50 arrivals at a
time, but there is no penalty either with bigger batches. Therefore, it is always recommended
to generate arrivals in big batches whenever possible.

5.2. The cost of calling R from C++

The C++ simulation core provided by simmer is quite fast, as we have demonstrated, but
performance is adversely affected by numerous calls to R. The practice of calling R from
C++ is generally strongly discouraged due to the overhead involved. However, in the case of
simmer, it not only makes sense, but is even fundamental in order to provide the user with
enough flexibility to build all kinds of simulation models. Nevertheless, this cost must be
known, and taken into account whenever a higher performance is needed.

To explore the cost of calling R from C++, let us define the following test:

R> test_simmer <- function(n, delay) {

+ test <- trajectory() %>%

+ timeout(delay)

+ env <- simmer() %>%

+ add_generator("test", test, at(1:n)) %>%

+ run(Inf)

+ arrivals <- get_mon_arrivals(env)

+ }

This toy example performs a very simple simulation in which n arrivals are attached (in one
shot, thanks to the convenience function at()) to a test trajectory at t = 1, 2, ..., n. The
trajectory consists of a single activity: a timeout with some configurable delay that may be
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a fixed value or a function call. Finally, after the simulation, the monitored data is extracted
from the simulation core to R. Effectively, this is equivalent to generating a data frame of n

rows (see the example output in Table 2).

Table 2: Output from the test_simmer() function.

Name Start time End time Activity time Finished Replication

test0 1 2 1 TRUE 1
test1 2 3 1 TRUE 1
test2 3 4 1 TRUE 1

As a matter of comparison, the following test_R_for() function produces the very same data
using base R:

R> test_R_for <- function(n) {

+ name <- character(n)

+ start_time <- numeric(n)

+ end_time <- numeric(n)

+ activity_time <- logical(n)

+ finished <- numeric(n)

+ for (i in 1:n) {

+ name[i] <- paste0("test", i-1)

+ start_time[i] <- i

+ end_time[i] <- i+1

+ activity_time[i] <- 1

+ finished[i] <- TRUE

+ }

+ arrivals <- data.frame(name = name, start_time = start_time,

+ end_time = end_time, activity_time = activity_time,

+ finished = finished, replication = 1)

+ }

Note that we are using a for loop to mimic the behavior of simmer’s internals, of how
monitoring is made, but we concede the advantage of pre-allocated vectors to R. A second
base R implementation, which builds upon the lapply() function, is implemented as the
test_R_lapply() function:

R> test_R_lapply <- function(n) {

+ as.data.frame(do.call(rbind, lapply(1:n, function(i) {

+ list(name = paste0("test", i - 1), start_time = i,

+ end_time = i + 1, activity_time = 1, finished = TRUE,

+ replication = 1)

+ })))

+ }

The test_simmer(), test_R_for() and test_R_lapply() functions all produce exactly the
same data in a similar manner (cfr. Table 2). Now, we want to compare how a delay consisting
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of a function call instead of a fixed value impacts the performance of simmer, and we use
test_R_for() and test_R_lapply() as yardsticks.

To this end, the microbenchmark package (Mersmann 2018) is used. The benchmark was
executed with n=1e5 and 20 replicas for each test. Table 3 shows a summary of the resulting
timings. As we can see, simmer is ∼ 4.4 times faster than for-based base R and ∼ 3.6 times
faster than lapply-based base R on average when we set a fixed delay. On the other hand,
if we replace it for a function call, the execution becomes ∼ 6.5 times slower, or ∼ 1.5 times
slower than for-based base R. It is indeed a quite good result if we take into account the fact
that base R pre-allocates memory, and that simmer is doing a lot more internally. But still,
these results highlight the overheads involved and encourage the use of fixed values instead
of function calls whenever possible.

Table 3: Execution time (milliseconds).

Expr Min Mean Median Max

test_simmer(n, 1) 429.8663 492.365 480.5408 599.3547
test_simmer(n, function() 1) 3067.9957 3176.963 3165.6859 3434.7979
test_R_for(n) 2053.0840 2176.164 2102.5848 2438.6836
test_R_lapply(n) 1525.6682 1754.028 1757.7566 2002.6634

6. Summary

The simmer package presented in this paper brings a generic yet powerful process-oriented
Discrete-Event Simulation framework to R. simmer combines a robust and fast simulation
core written in C++ with a rich and flexible R API. The main modelling component is the
activity. Activities are chained together with the pipe operator into trajectories, which are
common paths for processes of the same type. simmer provides a broad set of activities, and
allows the user to extend their capabilities with custom R functions.

Monitoring is automatically performed by the underlying simulation core, thereby enabling
the user to focus on problem modelling. simmer enables simple replication and parallelization
with standard R tools. Data can be extracted into R data frames from a single simulation
environment or a list of environments, each of which is marked as a different replication for
further analysis.

Despite the drawbacks of combining R calls into C++ code, simmer shows a good performance
combined with high flexibility. It is currently one of the most extensive DES frameworks for
R and provides a mature workflow for truly integrating DES into R processes.
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