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AccSGD AccSGD

Description

accelerated stochastic gradient, see Kidambi et al., 2018 for details

Usage

AccSGD(kappa = 1000, xi = 10, small_const = 0.7, weight_decay = 0)

Arguments
kappa long step
xi advantage parameter
small_const small constant

weight_decay 12 penalty on weights

Value

Anonymous function that returns optimizer when called.

References

Kidambi, R., Netrapalli, P., Jain, P., & Kakade, S. (2018, February). On the insufficiency of existing
momentum schemes for stochastic optimization. In 2018 Information Theory and Applications

Workshop (ITA) (pp. 1-9). IEEE.
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AdaBound AdaBound

Description

adaptive gradient methods with dynamic bound of learning rate, see Luo et al., 2019 for details

Usage

AdaBound(
betas = c(0.9, 0.999),
final_lr = 0.1,
gamma = 0.001,
eps = 1e-08,
weight_decay = 0,
amsbound = TRUE

)

Arguments
betas betas
final_lr eps
gamma small_const
eps eps

weight_decay weight_decay

amsbound amsbound

Value

Anonymous function that returns optimizer when called.

References

Luo, L., Xiong, Y., Liu, Y., & Sun, X. (2019). Adaptive gradient methods with dynamic bound of
learning rate. arXiv preprint arXiv:1902.09843.

Adamax Adamax

Description

Adamax optimizer, see Kingma and Ba, 2014

Usage

Adamax(betas = c(0.9, 0.999), eps = 1e-08, weight_decay = 0.002)
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Arguments
betas exponential decay rates
eps fuzz factor

weight_decay 12 penalty on weights

Value

Anonymous function that returns optimizer when called.

References

Kingma, D. P, & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

anova.sjSDM Anova

Description

Calculates type II anova.

Shared contributions (e.g. between space and environment) are also calculated (and divided pro-
portionally) and can be optionally visualized via plot.sjSDManova with add_shared=TRUE. The
anova can get unstable for many species and few occurrences/observations. We recommend using
large numbers for ’samples’.

Usage
## S3 method for class 'sjSDM'
anova(object, samples = 5000L, ...)
Arguments
object model of object sjSDM
samples Number of Monte Carlo samples

optional arguments which are passed to the calculation of the logLikelihood

Details

Compute analysis of variance

Value

An S3 class of type ’sjSDManova’ including the following components:

results Data frame of results.

to_print Data frame, summarized results for type I anova.
N Number of observations (sites).

spatial Logical, spatial model or not.

species individual species R2s.
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sites individual site R2s.

11s individual site by species negative-log-likelihood values.

Implemented S3 methods are print.sjSDManova and plot.sjSDManova

See Also

plot.sjSDManova, print.sjSDManova, plotInternalStructure

bioticStruct biotic structure

Description

define biotic (species-species) association (interaction) structure

Usage

bioticStruct(
df = NULL,
lambda = 9,
alpha = 0.5,
on_diag = FALSE,
reg_on_Cov = TRUE,
inverse = FALSE,

diag = FALSE
)
Arguments
df degree of freedom for covariance parametrization, if NULL df is set to ncol(Y)/2
lambda lambda penalty, strength of regularization: A x (lasso + ridge)
alpha weighting between lasso and ridge: (1—a)*|covariances|+al|covariances||?
on_diag regularization on diagonals
reg_on_Cov regularization on covariance matrix
inverse regularization on the inverse covariance matrix
diag use diagonal matrix with zeros (internal usage)
Value

An S3 class of type ’bioticStruct’ including the following components:

11_cov L1 regularization strength.

12_cov L2 regularization strength.

inverse Logical, use inverse covariance matrix or not.
diag Logical, use diagonal matrix or not.
reg_on_Cov Logical, regularize covariance matrix or not.
on_diag Logical, regularize diagonals or not.

Implemented S3 methods include print.bioticStruct
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See Also

$jSDM

Examples

## Not run:

# Basic workflow:
## simulate community:
com = simulate_SDM(env = 3L, species = 7L, sites = 100L)

## fit model:
model = sjSDM(Y = com$response,env = com$env_weights, iter = 50L)
# increase iter for your own data

coef (model)
summary (model)
getCov(model)

## plot results

species=c("sp1”,"sp2","sp3","sp4”,"sp5"”,"sp6","sp7")

group=c("mammal”, "bird"”,"fish","fish”,"mammal”, "amphibian"”,"amphibian")
group = data.frame(species=species, group=group)

plot(model, group=group)

## calculate post-hoc p-values:
p = getSe(model)
summary (p)

## or turn on the option in the sjSDM function:

model = sjSDM(Y = com$response, env = com$env_weights, se = TRUE,
family = binomial("probit"),
iter = 2L)

summary (model)

## fit model with interactions:
model = sjSDM(Y = com$response,

env = linear(data = com$env_weights, formula = ~X1:X2 + X3),
se = TRUE,
iter = 2L) # increase iter for your own data

summary (model)

## without intercept:
model = update(model, env_formula = ~0+X1:X2 + X3)

summary (model)

## predict with model:
preds = predict(model, newdata = com$env_weights)

## calculate R-squared:
R2 = Rsquared(model)
print(R2)

# With spatial terms:
## linear spatial model



XY = matrix(rnorm(200), 100, 2)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear (XY, ~0@+X1:X2),
iter = 50L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = XY)

R2 = Rsquared(model)

print(R2)

## Using spatial eigenvectors as predictors to account

## for spatial autocorrelation is a common approach:

SPV = generateSpatialEV(XY)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+., lambda = 0.1),
iter = 50L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = SPV)

## Visualize internal meta-community structure
an = anova(model)
plot(an, internal=TRUE)

## non-linear(deep neural network) model

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = DNN(SPV,hidden = c(5L, 5L), ~0+.),
iter = 2L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = SPV)

# Regularization

## lambda is the regularization strength

## alpha weights the lasso or ridge penalty:

## - alpha = @ --> pure lasso

## - alpha = 1.0 --> pure ridge

model = sjSDM(Y = com$response,
# mix of lasso and ridge
env = linear(com$env_weights, lambda = 0.01, alpha = 0.5),
# we can do the same for the species-species associations
biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
iter = 2L) # increase iter for your own data

summary (model)

coef (model)

getCov(model)

# Anova

com = simulate_SDM(env = 3L, species = 15L, sites = 200L, correlation = TRUE)

XY = matrix(rnorm(400), 200, 2)
SPV = generateSpatialEV(XY)
model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+.),
iter = 50L) # increase iter for your own data
result = anova(model)
print(result)

bioticStruct
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plot(result)

## visualize meta-community structure
plot(result, internal=TRUE)

# Deep neural network

## we can fit also a deep neural network instead of a linear model:

model = sjSDM(Y = com$response,

env = DNN(com$env_weights, hidden

= c(leL, 1oL, 10L)),

iter = 2L) # increase iter for your own data

summary (model)
getCov(model)

pred = predict(model, newdata = com$env_weights)

## extract weights
weights = getWeights(model)

## we can also assign weights:
setWeights(model, weights)

## with regularization:
model = sjSDM(Y = com$response,
# mix of lasso and ridge

env = DNN(com$env_weights, lambda

= 0.01, alpha = 0.5),

# we can do the same for the species-species associations

biotic = bioticStruct(lambda =

0.01, alpha = 0.5),

iter = 2L) # increase iter for your own data

getCov(model)
getWeights(model)

## End(Not run)

checkModel check model check model and rebuild if necessary

Description

check model check model and rebuild if necessary

Usage

checkModel (object)

Arguments

object of class sjSDM
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check_module check module

Description

check if module is loaded

Usage
check_module()

coef.sjSDM Return coefficients from a fitted siSDM model

Description

Return coefficients from a fitted sjSDM model

Usage
## S3 method for class 'sjSDM'
coef(object, ...)

Arguments
object a model fitted by sjSDM

optional arguments for compatibility with the generic function, no function im-

plemented

Value

Matrix of environmental coefficients or list of environmental and spatial coefficients for spatial

models.

DiffGrad DiffGrad

Description

DiffGrad

Usage

DiffGrad(betas = c(0.9, ©0.999), eps = 1e-08, weight_decay = 0)
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Arguments

betas
eps

weight_decay

Value

11

betas
eps

weight_decay

Anonymous function that returns optimizer when called.

DNN

Non-linear model (deep neural network) of environmental responses

Description

specify the model to be fitted

Usage

DNN(

data = NULL,

formula = NULL,
hidden = c(10L, 1oL, 10L),

activation

bias = TRUE,
lambda = 0,

alpha

= 0.
dropout =

Arguments

data
formula
hidden

activation
bias
lambda

alpha

dropout

"Selu",

matrix of environmental predictors
formula object for predictors
hidden units in layers, length of hidden corresponds to number of layers

activation functions, can be of length one, or a vector of activation functions for
each layer. Currently supported: tanh, relu, leakyrelu, selu, or sigmoid

whether use biases in the layers, can be of length one, or a vector (number of
hidden layers including (last layer) but not first layer (intercept in first layer is
specified by formula)) of logicals for each layer.

lambda penalty, strength of regularization: A * (lasso + ridge)
weighting between lasso and ridge: (1 — «) x |weights| + a|weights||?

probability of dropout rate
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Value

An S3 class of type ' DNN’ including the following components:

formula Model matrix formula

X Model matrix of covariates

data Raw data

11_coef L1 regularization strength, can be -99 if 1ambda = 0.0

12_coef L2 regularization strength, can be -99 if lambda = 0.9

hidden Integer vector of hidden neurons in the deep neural network. Length of vector
corresponds to the number of hidden layers.

activation Character vector of activation functions.

bias Logical vector whether to use bias or not in each hidden layer.

Implemented S3 methods include print.DNN

See Also

linear, sjSDM

Examples

## Not run:

# Basic workflow:
## simulate community:
com = simulate_SDM(env = 3L, species = 7L, sites = 100L)

## fit model:
model = sjSDM(Y = com$response,env = com$env_weights, iter = 50L)
# increase iter for your own data

coef (model)
summary (model)
getCov(model)

## plot results

species=c("sp1”,"sp2","sp3", "sp4","sp5"”, "sp6","sp7")

group=c("mammal”, "bird"”,"fish","fish", "mammal”, "amphibian", "amphibian")
group = data.frame(species=species,group=group)

plot(model, group=group)

## calculate post-hoc p-values:
p = getSe(model)
summary (p)

## or turn on the option in the sjSDM function:

model = sjSDM(Y = com$response, env = com$env_weights, se = TRUE,
family = binomial("probit"),
iter = 2L)

summary (model)

## fit model with interactions:
model = sjSDM(Y = com$response,
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env = linear(data = com$env_weights, formula = ~X1:X2 + X3),
se = TRUE,
iter = 2L) # increase iter for your own data

summary (model)

## without intercept:
model = update(model, env_formula = ~@+X1:X2 + X3)

summary (model)

## predict with model:
preds = predict(model, newdata = com$env_weights)

## calculate R-squared:
R2 = Rsquared(model)
print(R2)

# With spatial terms:

## linear spatial model

XY = matrix(rnorm(200), 100, 2)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(XY, ~0+X1:X2),
iter = 50L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = XY)

R2 = Rsquared(model)

print(R2)

## Using spatial eigenvectors as predictors to account

## for spatial autocorrelation is a common approach:

SPV = generateSpatialEV(XY)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+., lambda = 0.1),
iter = 50L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = SPV)

## Visualize internal meta-community structure
an = anova(model)
plot(an, internal=TRUE)

## non-linear (deep neural network) model

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = DNN(SPV,hidden = c(5L, 5L), ~0+.),
iter = 2L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = SPV)

# Regularization
## lambda is the regularization strength
## alpha weights the lasso or ridge penalty:
## - alpha = @ --> pure lasso
## - alpha = 1.0 --> pure ridge
model = sjSDM(Y = com$response,
# mix of lasso and ridge
env = linear(com$env_weights, lambda = 0.01, alpha = 0.5),

13
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# we can do the same for the species-species associations
biotic = bioticStruct(lambda = .01, alpha = 0.5),
iter = 2L) # increase iter for your own data

summary (model)

coef (model)

getCov(model)

# Anova
com = simulate_SDM(env = 3L, species = 15L, sites = 200L, correlation = TRUE)

XY = matrix(rnorm(400), 200, 2)

SPV = generateSpatialEV(XY)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+.),
iter = 50L) # increase iter for your own data

result = anova(model)

print(result)

plot(result)

## visualize meta-community structure
plot(result, internal=TRUE)

# Deep neural network

## we can fit also a deep neural network instead of a linear model:

model = sjSDM(Y = com$response,
env = DNN(com$env_weights, hidden = c(10L, 1oL, 10L)),
iter = 2L) # increase iter for your own data

summary (model)

getCov(model)

pred = predict(model, newdata = com$env_weights)

## extract weights
weights = getWeights(model)

## we can also assign weights:
setWeights(model, weights)

## with regularization:
model = sjSDM(Y = com$response,
# mix of lasso and ridge
env = DNN(com$env_weights, lambda = 0.01, alpha = 0.5),
# we can do the same for the species-species associations
biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
iter = 2L) # increase iter for your own data
getCov(model)
getWeights(model)

## End(Not run)

generateSpatialEV Generate spatial eigenvectors
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Description

15

Generates a Moran’s eigenvector map of the distance matrix. See Dray, Legendre, and Peres-Neto,

2006 for more information.

Usage

generateSpatialEV(coords = NULL, threshold = @)

Arguments
coords matrix or data.frame of coordinates
threshold ignore distances greater than threshold
Value

Matrix of spatial eigenvectors.

References

Dray, S., Legendre, P., & Peres-Neto, P. R. (2006). Spatial modelling: a comprehensive framework
for principal coordinate analysis of neighbour matrices (PCNM). Ecological modelling, 196(3-4),

483-493.

getCor getCor

Description

get species-species association correlation matrix

Usage

getCor(object)

## S3 method for class 'sjSDM'
getCor(object)

Arguments

object a model fitted by sjSDM, or sjSDM with DNN object

Value

Matrix of dimensions species by species corresponding to the covariance (occurrence) matrix.

See Also

$3jSDM,DNN
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getCov getCov

Description

get species-species association (covariance) matrix
Usage
getCov(object)

## S3 method for class 'sjSDM'
getCov(object)

Arguments

object a model fitted by sjSDM, or sjSDM with DNN object

Value

Matrix of dimensions species by species corresponding to the covariance (occurrence) matrix.

See Also
$jSDM,DNN

getImportance getlmportance

Description

variation partitioning with coefficients

Usage

getImportance(beta, sp = NULL, association, covX, covSP = NULL)

Arguments
beta abiotic weights
sp spatial weights
association species associations
covX environmental covariance matrix
covSP spatial covariance matrix
Author(s)

Maximilian Pichler
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getSe Post hoc calculation of standard errors

Description

Post hoc calculation of standard errors

Usage

getSe(object, step_size = NULL, parallel = QL)

Arguments

object a model fitted by sjSDM

step_size batch size for stochastic gradient descent

parallel number of cpu cores for the data loader, only necessary for large datasets
Value

The object passed to this function but the object$se field contains the standard errors now

getWeights Get weights

Description

return weights of each layer

Usage

getWeights(object)

## S3 method for class 'sjSDM'

getWeights(object)
Arguments

object object of class sjSDM with DNN
Value

* layers - list of layer weights

* sigma - weight to construct covariance matrix
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importance importance

Description

Computes standardized variance components with respect to abiotic, biotic, and spatial effect groups.

Usage
importance(x, save_memory = TRUE, ...)
Arguments
X object fitted by sjSDM or a list with beta, the association matrix, and the correla-
tion matrix of the predictors, see details below
save_memory use torch backend to calculate importance with single precision floats
additional arguments
Details

This variance partitioning approach is based on Ovaskainen et al., 2017. For an example how to
interpret the outputs, see Leibold et al., 2021. This function will be deprecated in the future. Please
use plot(anova(model), internal=TRUE) (currently only supported for spatial models).

Value

An S3 class of type ’sjSDMimportance’ including the following components:

names Character vector, species names.
res Data frame of results.
spatial Logical, spatial model or not.

Implemented S3 methods include print.sjSDMimportance and plot.sjSDMimportance

Author(s)

Maximilian Pichler

References

Ovaskainen, O., Tikhonov, G., Norberg, A., Guillaume Blanchet, F., Duan, L., Dunson, D., ... &
Abrego, N. (2017). How to make more out of community data? A conceptual framework and its
implementation as models and software. Ecology letters, 20(5), 561-576.

Leibold, M. A., Rudolph, F. J., Blanchet, F. G., De Meester, L., Gravel, D., Hartig, F.,, ... & Chase,
J. M. (2021). The internal structure of metacommunities. Oikos.

See Also

print.sjSDMimportance, plot.sjSDMimportance
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Examples

## Not run:
library(sjSDM)
com = simulate_SDM(sites = 300L, species = 12L,
link = "identical”, response = "identical")
Raw = com$response
SP = matrix(rnorm(300%2), 300, 2)
SPweights = matrix(rnorm(12L), 1L)
SPweights[1,1:6] = @
Y = Raw + (SP[,1,drop=FALSE]*SP[,2,drop=FALSE]) %*% SPweights
Y = ifelse(Y >0, 1, 0)

model = sjSDM(Y = Y,env = linear(com$env_weights, lambda = 0.001),
spatial = linear(SP,formula = ~@+X1:X2, lambda = 0.001),
biotic = bioticStruct(lambda = 0.001),iter = 40L)

imp = importance(model)

plot(imp)

## End(Not run)

installation_help Installation help

Description

Trouble shooting guide for the installation of the sjSDM package

We provide a function install_sjSDM to install automatically all necessary python dependencies
but it can fail sometimes because of individual system settings or if other python/conda installations
get into the way.

’PyTorch’ Installation - Before you start
A few notes before you start with the installation (skip this point if you do not know ’conda’):
* existing ‘conda’ installations: make sure you have the latest conda3/miniconda3 version and
remove unnecessary conda’ installations.

* existing ’conda’/’virtualenv’ environments (skip this point if you do not know ’conda’): we
currently enforce the usage of a specific environment called 'r-sjsdm’, so if you want use a
custom environment it should be named ’r-sjsdm’

Windows - automatic installation

Sometimes the automatic *miniconda’ installation (via install_sjSDM) doesn’t work because of
white spaces in the user’s name. But you can easily download and install ’conda’ on your own:

Download and install the latest ’conda’ version

Afterwards run:
install_sjSDM(version =c("gpu”)) # or "cpu” if you do not have a proper gpu device

Reload the package and run the example , if this doesn’t work:

¢ Restart RStudio

* Install manually ’pytorch’, see the following section


https://www.anaconda.com/download/
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Windows - manual installation
Download and install the latest conda’ version:

¢ Install the latest ’conda’ version

* Open the command window (cmd.exe - hit windows key + r and write cmd)

Run in cmd.exe:

conda create --name r-sjsdm python=3.7

conda activate r-sjsdm

conda install pytorch torchvision cpuonly -c pytorch # cpu

conda install pytorch torchvision cudatoolkit=11.3 -c pytorch #gpu
python -m pip install pyro-ppl torch_optimizer madgrad

PH P A H O

Restart R, try to run the example, and if this doesn’t work:

* Restart RStudio
* See the "Help and bugs’ section

Linux - automatic installation

Run in R:
install_sjSDM(version=c("gpu")) # or "cpu” if you do not have a proper 'gpu' device

Restart R try to run the example, if this doesn’t work:

¢ Restart RStudio

¢ Install manually "PyTorch’, see the following section

Linux - manual installation

We strongly advise to use a ’conda’ environment but a virtual env should also work. The only
requirement is that it is named ’r-sjsdm’

Download and install the latest ’conda’ version:

e Install the latest ’conda’ version

* Open your terminal

Run in your terminal:

conda create --name r-sjsdm python=3.7

conda activate r-sjsdm

conda install pytorch torchvision cpuonly -c pytorch # cpu

conda install pytorch torchvision cudatoolkit=11.3 -c pytorch #gpu
python -m pip install pyro-ppl torch_optimizer madgrad

H P A H

Restart R try to run the example, if this doesn’t work:

* Restart RStudio
* See the "Help and bugs’ section


https://www.anaconda.com/download/
https://www.anaconda.com/download/
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MacOS - automatic installation

Run in R:
install_sjSDM(version=c("cpu”))

Restart R try to run the example, if this doesn’t work:

¢ Restart RStudio

¢ Install manually *PyTorch’, see the following section

MacOS - manual installation
Download and install the latest conda’ version:

e Install the latest conda’ version

* Open your terminal

Run in your terminal:

$ conda create --name r-sjsdm python=3.7

$ conda activate r-sjsdm

$ python -m pip install torch torchvision torchaudio

$ python -m pip install pyro-ppl torch_optimizer madgrad

Restart R try to run the example from, if this doesn’t work:

* Restart RStudio
* See the "Help and bugs’ section

Help and bugs

To report bugs or ask for help, post a reproducible example via the sjSDM issue tracker with a copy
of the install_diagnostic output as a quote.

install_diagnostic install diagnostic

Description

Print information about available conda environments, python configs, and pytorch versions.

Usage

install_diagnostic()

Details

If the trouble shooting guide installation_help did not help with the installation, please create
an issue on issue tracker with the output of this function as a quote.

Value

No return value, called to extract dependency information.


https://www.anaconda.com/download/
https://stackoverflow.com/questions/5963269/how-to-make-a-great-r-reproducible-example/
https://github.com/TheoreticalEcology/s-jSDM/issues/
https://github.com/TheoreticalEcology/s-jSDM/issues
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See Also

installation_help, install_sjSDM

is_torch_available

install_sjSDM Install sjSDM and its dependencies

Description

Install sjSDM and its dependencies

Usage
install_sjSDM(
conda = "auto",
version = c("cpu”, "gpu"),

restart_session = TRUE,

)
Arguments
conda path to conda
version version = "cpu" for CPU version, or "gpu" for GPU version. (note MacOS users

have to install "cuda’ binaries by themselves)

restart_session

Restart R session after installing (note this will only occur within RStudio).

not supported

Value

No return value, called for side effects (installation of ’python’ dependencies).

is_torch_available is_torch_available

Description

is_torch_available

Usage

is_torch_available()

Details

check whether torch is available

Value

Logical, is torch module available or not.
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linear Linear model of environmental response

Description

specify the model to be fitted

Usage

linear(data = NULL, formula = NULL, lambda = @, alpha = 0.5)

Arguments

data matrix of environmental predictors

formula formula object for predictors

lambda lambda penalty, strength of regularization: A x (lasso + ridge)

alpha weighting between lasso and ridge: (1—a)#|coef ficients|+al|coef ficients||?
Value

An S3 class of type ’linear’ including the following components:

formula Model matrix formula

X Model matrix of covariates

data Raw data

11_coef L1 regularization strength, can be -99 if 1ambda = 0.0
12_coef L2 regularization strength, can be -99 if 1lambda = 9.0

Implemented S3 methods include print.linear

See Also
DNN, sjSDM

Examples

## Not run:

# Basic workflow:
## simulate community:
com = simulate_SDM(env = 3L, species = 7L, sites = 100L)

## fit model:
model = sjSDM(Y = com$response,env = com$env_weights, iter = 50L)
# increase iter for your own data

coef (model)
summary (model)

getCov(model)

## plot results
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species=c("sp1”,"sp2","sp3","sp4","sp5","sp6", "sp7")

group=c("mammal”, "bird"”,"fish","fish", "mammal”, "amphibian"”, "amphibian")
group = data.frame(species=species,group=group)

plot(model, group=group)

## calculate post-hoc p-values:
p = getSe(model)
summary (p)

## or turn on the option in the sjSDM function:

model = sjSDM(Y = com$response, env = com$env_weights, se = TRUE,
family = binomial("probit"),
iter = 2L)

summary (model)

## fit model with interactions:
model = sjSDM(Y = com$response,

env = linear(data = com$env_weights, formula = ~X1:X2 + X3),

se = TRUE,
iter = 2L) # increase iter for your own data
summary (model)

## without intercept:
model = update(model, env_formula = ~@+X1:X2 + X3)

summary (model)

## predict with model:
preds = predict(model, newdata = com$env_weights)

## calculate R-squared:
R2 = Rsquared(model)
print(R2)

# With spatial terms:

## linear spatial model

XY = matrix(rnorm(200), 100, 2)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear (XY, ~@+X1:X2),
iter = 50L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = XY)

R2 = Rsquared(model)

print(R2)

## Using spatial eigenvectors as predictors to account

## for spatial autocorrelation is a common approach:

SPV = generateSpatialEV(XY)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+., lambda = 0.1),
iter = 50L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = SPV)

## Visualize internal meta-community structure
an = anova(model)
plot(an, internal=TRUE)

linear
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## non-linear(deep neural network) model

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = DNN(SPV,hidden = c(5L, 5L), ~0+.),
iter = 2L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = SPV)

# Regularization

## lambda is the regularization strength

## alpha weights the lasso or ridge penalty:

## - alpha = @ --> pure lasso

## - alpha = 1.0 --> pure ridge

model = sjSDM(Y = com$response,
# mix of lasso and ridge
env = linear(com$env_weights, lambda = 0.01, alpha = 0.5),
# we can do the same for the species-species associations
biotic = bioticStruct(lambda = .01, alpha = 0.5),
iter = 2L) # increase iter for your own data

summary (model)

coef (model)

getCov(model)

# Anova

com = simulate_SDM(env = 3L, species = 15L, sites = 200L, correlation = TRUE)

XY = matrix(rnorm(400), 200, 2)

SPV = generateSpatialEV(XY)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+.),
iter = 50L) # increase iter for your own data

result = anova(model)

print(result)

plot(result)

## visualize meta-community structure
plot(result, internal=TRUE)

# Deep neural network

## we can fit also a deep neural network instead of a linear model:

model = sjSDM(Y = com$response,
env = DNN(com$env_weights, hidden = c(10L, 1oL, 10L)),
iter = 2L) # increase iter for your own data

summary (model)

getCov(model)

pred = predict(model, newdata = com$env_weights)

## extract weights
weights = getWeights(model)

## we can also assign weights:
setWeights(model, weights)

25
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## with regularization:
model = sjSDM(Y = com$response,
# mix of lasso and ridge
env = DNN(com$env_weights, lambda = 0.01, alpha = 0.5),
# we can do the same for the species-species associations
biotic = bioticStruct(lambda = .01, alpha = 0.5),
iter = 2L) # increase iter for your own data
getCov(model)
getWeights(model)

## End(Not run)

loglLik.sjSDM Extract negative-log-Likelihood from a fitted sjSDM model

Description

Extract negative-log-Likelihood from a fitted sjSDM model

Usage
## S3 method for class 'sjSDM'
loglLik(object, individual = FALSE, ...)
Arguments
object a model fitted by sjSDM
individual returns internal 11 structure, mostly for internal useage

optional arguments passed to internal logLik function (only used if individual=TRUE)

Value

Numeric value or numeric matrix if individual is true.

madgrad madgrad

Description

stochastic gradient descent optimizer

Usage

madgrad(momentum = 0.9, weight_decay = @, eps = 1e-06)

Arguments

momentum strength of momentum
weight_decay 12 penalty on weights

eps epsilon
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Value

27

Anonymous function that returns optimizer when called.

References

Defazio, A., & Jelassi, S. (2021). Adaptivity without Compromise: A Momentumized, Adaptive,
Dual Averaged Gradient Method for Stochastic Optimization. arXiv preprint arXiv:2101.11075.

new_image

new_image function

Description

new_image function

Usage

new_image (
Z?
cols = (grDevices
range = c(0.5, 1)
)

::colorRampPalette(c("white"”, "#24526E"), bias = 1.5))(10),

Arguments
z Z matrix
cols cols for gradient
range rescale to range
plot.sjSDM Coefficients plot
Description

Plotting coefficients returned by sjSDM model. This function only for model fitted by linear, fitted
by DNN is not yet supported.

Usage
## S3 method for class 'sjSDM'
plot(x, ...)

Arguments
X a model fitted by sjSDM

Additional arguments to pass to plotsjSDMcoef.
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Value

ggplot2 object for linear sjSDM model and nothing for DNN sjSDM model.

Author(s)
CAI Wang

See Also

plotsjSDMcoef

Examples

## Not run:

library(sjSDM)

# simulate community:

com = simulate_SDM(env = 6L, species = 7L, sites = 100L)

# fit model:
model = sjSDM(Y = com$response,env = com$env_weights, iter = 2L,se = TRUE)

#create a group dataframe for plot
species=c("sp1”,"sp2","sp3", "sp4” , "sp5", "sp6” , "sp7")

group=c("mammal”, "bird”,"fish","fish", "mammal”, "amphibian"”, "amphibian")
group = data.frame(species=species,group=group)

plot(model, group=group)

## End(Not run)

plot.sjSDM.DNN Training history

Description

Plot training loss history

Usage
## S3 method for class 'sjSDM.DNN'
plot(x, ...)
Arguments
X a model fitted by sjSDM with DNN object
passed to plot
Value

No return value, called for side effects.
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Examples

## Not run:

library(sjSDM)

# simulate community:

com = simulate_SDM(env = 6L, species = 7L, sites = 100L)

# fit model:
model = sjSDM(Y = com$response,env = com$env_weights, iter = 2L,se = TRUE)

#create a group dataframe for plot

SpeCieS:C(”Sp1 II’IIspzll’llsp3ll’llsp4ll’Nspsll’llspell’llsp7“)
group=c("mammal”,"bird”,"fish","fish"”, "mammal”, "amphibian”, "amphibian")
group = data.frame(species=species, group=group)

plot(model, group=group)

## End(Not run)

plot.sjSDManova Plot anova results

Description

Plot anova results

Usage

## S3 method for class 'sjSDManova'
plot(
X,
Y,
type = c("McFadden”, "Deviance"”, "Nagelkerke"),
internal = FALSE,
add_shared = FALSE,
cols = c("#7FC97F", "#BEAED4", "#FDC086"),
alpha = 0.15,
env_deviance = NULL,
suppress_plotting = FALSE,

)
Arguments
X anova object from anova.sjSDM
y unused argument
type deviance, Nagelkerke or McFadden R-squared
internal logical, plot internal or total structure
add_shared Add shared contributions when plotting the internal structure
cols colors for the groups

alpha alpha for colors
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env_deviance environmental deviance
suppress_plotting
return plots but don’t plot them

Additional arguments to pass to plot()
The internal = TRUE plot was heavily inspired by Leibold et al., 2022

Value

List with the following components:

If internal=TRUE:

plots ggplot objects for sites and species.
data List of data.frames with the shown results.
else:
VENN Matrix of shown results.
References

Leibold, M. A., Rudolph, F. J., Blanchet, F. G., De Meester, L., Gravel, D., Hartig, F., ... & Chase,
J. M. (2022). The internal structure of metacommunities. Oikos, 2022(1).

plot.sjSDMimportance  Plot importance

Description

Plot importance

Usage

## S3 method for class 'sjSDMimportance'

plot(x, y, col.points = "#24526e", cex.points = 1.2, ...)
Arguments

X a model fitted by importance

y unused argument

col.points point color

cex.points point size

Additional arguments to pass to plot()

Value

The visualized matrix is silently returned.
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plot.sjSDM_cv Plot elastic net tuning

Description

Plot elastic net tuning
Usage

## S3 method for class 'sjSDM_cv'

plot(x, y, perf = c("logLik”, "AUC", "AUC_macro"), resolution = 6, k = 3, ...)
Arguments

X a model fitted by sjSDM_cv

y unused argument

perf performance measurement to plot

resolution resolution of grid

k number of knots for the gm

Additional arguments to pass to plot()

Value

Named vector of optimized regularization parameters.

Without space:

lambda_cov
alpha_cov
lambda_coef

alpha_coef
With space:

lambda_cov
alpha_cov
lambda_coef
alpha_coef
lambda_spatial
alpha_spatial

Regularization strength in the bioticStruct object.
Weigthing between L1 and L2 in the bioticStruct object.
Regularization strength in the 1inear or DNN object.

Weigthing between L1 and L2 in the 1inear or DNN object.

Regularization strength in the bioticStruct object.

Weigthing between L1 and L2 in the bioticStruct object.

Regularization strength in the 1inear or DNN object.

Weigthing between L1 and L2 in the 1inear or DNN object.

Regularization strength in the 1inear or DNN object for the spatial component.

Weigthing between L1 and L2 in thelinear or DNN object for the spatial com-
ponent.
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plotInternalStructure Plot internal metacommunity structure

Description

Plot internal metacommunity structure

Usage

plotInternalStructure(
object,
Rsquared = c("McFadden”, "Nagelkerke"),
add_shared = FALSE,
env_deviance = NULL,
suppress_plotting = FALSE

)
Arguments
object anova object from anova.sjSDM
Rsquared which R squared should be used, McFadden or Nagelkerke (McFadden is de-
fault)
add_shared split shared components, default is TRUE

env_deviance environmental deviance

suppress_plotting
should the plots be suppressed or not.

Plots and returns the internal metacommunity structure of species and sites (see
Leibold et al., 2022). Plots were heavily inspired by Leibold et al., 2022

Value

List with the following components:

plots ggplot objects for sites and species.
data List of data.frames with the internal metacommunity structure.
References

Leibold, M. A., Rudolph, F. J., Blanchet, F. G., De Meester, L., Gravel, D., Hartig, F., ... & Chase,
J. M. (2022). The internal structure of metacommunities. Oikos, 2022(1).
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plotsjSDMcoef Internal coefficients plot

Description
Plotting coefficients returned by sjSDM model. This function only for model fitted by linear, fitted
by DNN is not yet supported.

Usage

plotsjSDMcoef (object, wrap_col = NULL, group = NULL, col = NULL, slist = NULL)

Arguments
object a model fitted by sjSDM
wrap_col Scales argument passed to wrap_col
group Define the taxonomic characteristics of a species, you need to provide a dataframe
with columnl named “species” and column2 named “group”, default is NULL.
For example, group[1,1]=="spl", group[1,2]=="Mammal".
col Define colors for groups, default is NULL.
slist Select the species you want to plot, default is all, parameter is not supported yet.
Value
ggplot2 object
Author(s)
CAI Wang
Examples
## Not run:
library(sjSDM)

# simulate community:
com = simulate_SDM(env = 6L, species = 7L, sites = 100L)

# fit model:
model = sjSDM(Y = com$response,env = com$env_weights, iter = 2L,se = TRUE)

#create a group dataframe for plot

SpeCieS:C(”Sp1 II’IIspzll’llsp3ll’llsp4ll’Nspsll’llspell’llsp7“)
group=c("mammal”,"bird”,"fish","fish"”,"mammal”, "amphibian”, "amphibian")
group = data.frame(species=species, group=group)

plot(model, group=group)

## End(Not run)
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predict.sjSDM Predict from a fitted siSDM model

Description

Predict from a fitted sjSDM model

Usage
## S3 method for class 'sjSDM'
predict(
object,
newdata = NULL,
SP = NULL,

type = c("link”, "raw"),
dropout = FALSE,

)
Arguments
object a model fitted by sjSDM
newdata newdata for predictions
SP spatial predictors (e.g. X and Y coordinates)
type raw or link
dropout use dropout for predictions or not, only supported for DNNs
optional arguments for compatibility with the generic function, no function im-
plemented
Value

Matrix of predictions (sites by species)

print.bioticStruct Print a bioticStruct object

Description

Print a bioticStruct object

Usage
## S3 method for class 'bioticStruct'
print(x, ...)

Arguments
X object created by bioticStruct

optional arguments for compatibility with the generic function, no function im-
plemented
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print.DNN Print a DNN object
Description
Print a DNN object
Usage
## S3 method for class 'DNN'
print(x, ...)
Arguments
X object created by DNN
optional arguments for compatibility with the generic function, no function im-
plemented
print.linear Print a linear object
Description

Print a linear object

Usage
## S3 method for class 'linear’
print(x, ...)
Arguments
X object created by linear
optional arguments for compatibility with the generic function, no function im-
plemented
Value

Invisible formula object
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print.sjSDM Print a fitted siSDM model

Description

Print a fitted sjSDM model

Usage
## S3 method for class 'sjSDM'
print(x, ...)
Arguments
X a model fitted by sjSDM
optional arguments for compatibility with the generic function, no function im-
plemented
Value
No return value
print.sjSDManova Print sjSDM anova
Description
Print sjSDM anova
Usage
## S3 method for class 'sjSDManova'
print(x, ...)
Arguments
X an object of anova. sjSDM
optional arguments for compatibility with the generic function, no function im-
plemented
Value

The above matrix is silently returned
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print.sjSDMimportance Print importance

Description

Print importance

Usage
## S3 method for class 'sjSDMimportance'
print(x, ...)
Arguments
X an object of importance
optional arguments for compatibility with the generic function, no function im-
plemented
Value

The matrix above is silently returned

print.sjSDM_cv Print a fitted sjSDM_cv model

Description

Print a fitted sjSDM_cv model

Usage
## S3 method for class 'sjSDM_cv'
print(x, ...)
Arguments
X a model fitted by sjSDM_cv
optional arguments for compatibility with the generic function, no function im-
plemented
Value

Above data frame is silently returned.
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Rsquared

RMSprop

RMSprop

Description

RMSprop optimizer

Usage

RMSprop(

alpha = 0.99,
eps = 1e-08,
weight_decay = 1e-04,

momentum =
centered

Arguments

alpha

eps
weight_decay
momentum

centered

Value

0.1,
FALSE

decay factor

fuzz factor

12 penalty on weights
momentum

centered or not

Anonymous function that returns optimizer when called.

Rsquared

R-squared

Description

calculate R-squared following McFadden or Nagelkerke

Usage

Rsquared(model, method = c("McFadden”, "Nagelkerke"))

Arguments

model

method

model

McFadden or Nagelkerke
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Details

Calculate R-squared following Nagelkerke or McFadden:

* Nagelkerke: R = 1 — exp(2/N - (logLo — logLy))
» McFadden: R? =1 — logL,/logLo

Value

R-squared as numeric value

Author(s)

Maximilian Pichler

setWeights Set weights

Description

set layer weights and sigma in sjSDM with DNN object

Usage
setWeights(object, weights)

## S3 method for class 'sjSDM'
setWeights(object, weights = NULL)

Arguments
object object of class sjSDM with DNN object
weights list of layer weights: 1ist(env=1list(matrix(...)), spatial=list(matrix(...)),
sigma=matrix(...)), see getWeights
Value

No return value, weights are changed in place.
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SGD SGD

Description

stochastic gradient descent optimizer

Usage

SGD(momentum = @.5, dampening = @, weight_decay = @, nesterov = TRUE)

Arguments
momentum strength of momentum
dampening decay

weight_decay 12 penalty on weights

nesterov Nesterov momentum or not

Value

Anonymous function that returns optimizer when called.

simulate.sjSDM Generates simulations from siSDM model

Description

Simulate nsim responses from the fitted model following a multivariate probit model. So currently
only supported for family = stats::binomial("probit")

Usage
## S3 method for class 'sjSDM'
simulate(object, nsim = 1, seed = NULL, ...)
Arguments
object a model fitted by sjSDM
nsim number of simulations
seed seed for random number generator

optional arguments for compatibility with the generic function, no functionality
implemented

Value

Array of simulated species occurrences of dimension order [nsim, sites, species]
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simulate_SDM

Simulate joint Species Distribution Models

Description

Simulate species distributions

Usage

simulate_SDM(
env = 5L,
sites = 100L,
species = 5L,
correlation = TRUE,
weight_range = c(-1
link = "probit”,
response = "pa”,
sparse = NULL,
tolerance = 0.05,
iter = 20L,
seed = NULL

’ 1)7

Arguments

env

sites
species
correlation
weight_range
link
response
sparse
tolerance
iter

seed

Details

number of environment variables

number of sites

number of species

correlated species TRUE or FALSE, can be also a function or a matrix
sample true weights from uniform range, default -1,1
probit, logit or identical

pa (presence-absence) or count

Sparse rate

tolerance for sparsity check

tries until sparse rate is achieved

random seed. Default = 42

Probit is not possible for abundance response (response = ’count’)

Value

List of simulation results:

env
species

sites

Number of environmental covariates
Number of species

Number of sites
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link Which link
response_type  Which response type
response Species occurrence matrix

correlation Species covariance matrix

species_weights
Species-environment coefficients

env_weights Environmental covariates
corr_acc Method to calculate sign accurracy
Author(s)

Maximilian Pichler

sjSDM Fitting scalable joint Species Distribution Models (sjSDM)

Description

sjSDM is used to fit joint Species Distribution models (jJSDMs) using the central processing unit
(CPU) or the graphical processing unit (GPU). The default is a multivariate probit model based on
a Monte-Carlo approximation of the joint likelihood. sjSDM can be used to fit linear but also deep
neural networks and supports the well known formula syntax.

Usage
sjSDM(
Y = NULL,
env = NULL,

biotic = bioticStruct(),
spatial = NULL,

family = stats::binomial("probit”),
iter = 100L,

step_size = NULL,
learning_rate = 0.01,

se = FALSE,

sampling = 100L,

parallel = oL,

control = sjSDMControl(),
device = "cpu”,

dtype = "float32",

seed = 758341678

)

sjSDM. tune(object)
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Arguments
Y matrix of species occurrences/responses in range
env matrix of environmental predictors, object of type linear or DNN
biotic defines biotic (species-species associations) structure, object of type bioticStruct
spatial defines spatial structure, object of type Linear or DNN
family error distribution with link function, see details for supported distributions
iter number of fitting iterations
step_size batch size for stochastic gradient descent, if NULL then step_size is set to: step_size

=0.1*nrow(X)

learning_rate learning rate for Adamax optimizer

se calculate standard errors for environmental coefficients
sampling number of sampling steps for Monte Carlo integration
parallel number of cpu cores for the data loader, only necessary for large datasets
control control parameters for optimizer, see sjSDMControl
device which device to be used, "cpu" or "gpu"
dtype which data type, most GPUs support only 32 bit floats.
seed seed for random operations
object object of type sjSDM_cv
Details

The function fits per default a multivariate probit model via Monte-Carlo integration (see Chen et
al., 2018) of the joint likelihood for all species.

Model description:

The most common jSDM structure describes the site (¢ = 1, ..., I) by species (j = 1, ..., J) matrix
Y;; as a function of environmental covariates X;,(n = 1,..., N covariates), and the species-
species covariance matrix 3 accounts for correlations in e;;:

9(Zi) = Bjo + TN XinBnj + i
with g(.) as link function. For the multivariate probit model, the link function is:
Yij = U(Zij > 0)

The probability to observe the occurrence vector Y] is:

PrYi|Xi8,5) = / / 63(Y1; 38, )dY5..dY]
Aij A

in the interval A;; with (—inf, 0] if Y;; = 0 and [0, + inf) if Y}; = 1.
and ¢ being the density function of the multivariate normal distribution.

The probability of Y; requires to integrate over Y;* which has no closed analytical expression for
more than two species which makes the evaluation of the likelihood computationally costly and
needs a numerical approximation. The previous equation can be expressed more generally as:

J
£(6:3:Y3.%9) = [ TIPr(¥lXi6 -+ OPr(([)aC
j=1
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sjSDM approximates this integral by M Monte-Carlo samples from the multivariate normal species-
species covariance. After integrating out the covariance term, the remaining part of the likelihood
can be calculated as in an univariate case and the average of the M samples are used to get an
approximation of the integral:

J

1

g omet [[Pr(Yy[Xif + Gm)
j=1

L(B,5;Y;,X;) ~

with {,, ~ MV N(0,%).

sjSDMuses 'PyTorch’ to run optionally the model on the graphical processing unit (GPU). Python
dependencies needs to be installed before being able to use the sjSDM function. We provide a
function which installs automatically python and the python dependencies. See install_sjSDM,
vignette("Dependencies”, package = "sjSDM")

See Pichler and Hartig, 2020 for benchmark results.

Supported distributions:
Currently supported distributions and link functions:
* binomial: "probit"” or "logit”
* poisson: "log"
e "nbinom”: "log"
e gaussian: "identity”

Space:
We can extend the model to account for spatial auto-correlation between the sites by:

9(Zij) = Bjo + S2_1 XinBnj + Sh_1Simaimj + €3
There are two ways to generate spatial predictors .S:
* trend surface model - using spatial coordinates in a polynomial:
linear(data=Coords, ~@+poly(X, Y, degree =2))
* eigenvector spatial filtering - using spatial eigenvectors. Spatial eigenvectors can be gener-
ated by the generateSpatialEV function:
SPV = generateSpatialEV(Coords)

Then we use, for example, the first 20 spatial eigenvectors:
linear(data=SPV[ ,1:20], ~0+.)

It is important to set the intercept to 0 in the spatial term (e.g. via ~@+.) because the intercept is

already set in the environmental object.

Installation:

install_sjSDM should be theoretically able to install conda and "PyTorch’ automatically. If
sjSDM still does not work after reloading RStudio, you can try to solve this on your following our
trouble shooting guide installation_help. If the problem remains, please create an issue on
issue tracker with a copy of the install_diagnostic output as a quote.

Value
An S3 class of type ’sjSDM’ including the following components:

cl Model call

formula Formula object for environmental covariates.
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names Names of environmental covariates.

species Names of species (can be NULL if columns of Y are not named).
get_model Method which builds and returns the underlying *python” model.
loglik negative log-Likelihood of the model and the regularization loss.
model The actual model.

settings List of model settings, see arguments of sjSDM.

family Response family.

time Runtime.

data List of Y, X (and spatial) model matrices.

sessionInfo Output of sessionInfo.

weights List of model coefficients (environmental (and spatial)).

sigma Lower triangular weight matrix for the covariance matrix.
history History of iteration losses.

se Matrix of standard errors, if se = FALSE the field ’se’ is NULL.

Implemented S3 methods include summary.sjSDM, plot.sjSDM, print.sjSDM, predict.sjSDM,
and coef. sjSDM. For other methods, see section ’See Also’.

sjSDM. tune returns an S3 object of class sjSDM’, see above for information about values.

Author(s)

Maximilian Pichler

References

Chen, D., Xue, Y., & Gomes, C. P. (2018). End-to-end learning for the deep multivariate probit
model. arXiv preprint arXiv:1803.08591.

Pichler, M., & Hartig, F. (2021). A new joint species distribution model for faster and more accurate
inference of species associations from big community data. Methods in Ecology and Evolution,
12(11), 2159-2173.

See Also

getCor, getCov, update.sjSDM, sjSDM_cv, DNN, plot.sjSDM, print.sjSDM, predict.sjSDM,
coef.sjSDM, summary.sjSDM, simulate.sjSDM, getSe, anova.sjSDM, importance

Examples

## Not run:

# Basic workflow:
## simulate community:
com = simulate_SDM(env = 3L, species = 7L, sites = 100L)

## fit model:
model = sjSDM(Y = com$response,env = com$env_weights, iter = 50L)
# increase iter for your own data

coef (model)
summary (model)
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getCov(model)

## plot results

species=c("sp1”,"sp2","sp3","sp4","sp5","sp6", "sp7")

group=c("mammal”, "bird"”,"fish","fish", "mammal”, "amphibian","amphibian")
group = data.frame(species=species,group=group)

plot(model, group=group)

## calculate post-hoc p-values:
p = getSe(model)
summary (p)

## or turn on the option in the sjSDM function:

model = sjSDM(Y = com$response, env = com$env_weights, se = TRUE,
family = binomial("probit"),
iter = 2L)

summary (model)

## fit model with interactions:
model = sjSDM(Y = com$response,

env = linear(data = com$env_weights, formula = ~X1:X2 + X3),

se = TRUE,
iter = 2L) # increase iter for your own data
summary (model)

## without intercept:
model = update(model, env_formula = ~@+X1:X2 + X3)

summary (model)

## predict with model:
preds = predict(model, newdata = com$env_weights)

## calculate R-squared:
R2 = Rsquared(model)
print(R2)

# With spatial terms:

## linear spatial model

XY = matrix(rnorm(200), 100, 2)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear (XY, ~@+X1:X2),
iter = 50L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = XY)

R2 = Rsquared(model)

print(R2)

## Using spatial eigenvectors as predictors to account

## for spatial autocorrelation is a common approach:

SPV = generateSpatialEV(XY)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+., lambda = 0.1),
iter = 50L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = SPV)

siSDM
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## Visualize internal meta-community structure
an = anova(model)
plot(an, internal=TRUE)

## non-linear(deep neural network) model

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = DNN(SPV,hidden = c(5L, 5L), ~0+.),
iter = 2L) # increase iter for your own data

summary (model)

predict(model, newdata = com$env_weights, SP = SPV)

# Regularization

## lambda is the regularization strength

## alpha weights the lasso or ridge penalty:

## - alpha = @ --> pure lasso

## - alpha = 1.0 --> pure ridge

model = sjSDM(Y = com$response,
# mix of lasso and ridge
env = linear(com$env_weights, lambda = 0.01, alpha = 0.5),
# we can do the same for the species-species associations
biotic = bioticStruct(lambda = 0.01, alpha = 0.5),
iter = 2L) # increase iter for your own data

summary (model)

coef (model)

getCov(model)

# Anova

com = simulate_SDM(env = 3L, species = 15L, sites = 200L, correlation = TRUE)

XY = matrix(rnorm(400), 200, 2)

SPV = generateSpatialEV(XY)

model = sjSDM(Y = com$response, env = linear(com$env_weights),
spatial = linear(SPV, ~0+.),
iter = 50L) # increase iter for your own data

result = anova(model)

print(result)

plot(result)

## visualize meta-community structure
plot(result, internal=TRUE)

# Deep neural network

## we can fit also a deep neural network instead of a linear model:

model = sjSDM(Y = com$response,
env = DNN(com$env_weights, hidden = c(1oL, 1oL, 10L)),
iter = 2L) # increase iter for your own data

summary (model)

getCov(model)

pred = predict(model, newdata = com$env_weights)

## extract weights
weights = getWeights(model)

47



48 sjSDMControl

## we can also assign weights:
setWeights(model, weights)

## with regularization:
model = sjSDM(Y = com$response,
# mix of lasso and ridge
env = DNN(com$env_weights, lambda = 0.01, alpha = 0.5),
# we can do the same for the species-species associations
biotic = bioticStruct(lambda = .01, alpha = 0.5),

iter = 2L) # increase iter for your own data
getCov(model)

getWeights(model)

## End(Not run)

sjSDMControl sjSDM control object

Description

sjSDM control object

Usage

sjSDMControl(
optimizer = RMSprop(),
scheduler = 0,
1r_reduce_factor = 0.99,
early_stopping_training = 0,
mixed = FALSE

)

Arguments
optimizer object of type RMSprop, Adamax, SGD, AccSGD, madgrad, or AdaBound
scheduler reduce Ir on plateau scheduler or not (0 means no scheduler, > O number of

epochs before reducing learning rate)
lr_reduce_factor
factor to reduce learning rate in scheduler
early_stopping_training
number of epochs without decrease in training loss before invoking early stop-
ping (0 means no early stopping).

mixed mixed (half-precision) training or not. Only recommended for GPUs > 2000
series

Value

List with the following fields:

optimizer Function which returns an optimizer.
scheduler_boolean

Logical, use scheduler or not.
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scheduler_patience

Integer, number of epochs to wait before applying plateau scheduler.

lr_reduce_factor

mixed

Numerical, learning rate reduce factor.

Logical, use mixed training or not.

early_stopping_training

Numerical, early stopping after n epochs.

sjSDM_cv

Cross validation of elastic net tuning

Description

Cross validation of elastic net tuning

Usage

sjSDM_cv/(
Y}
env = NULL,
biotic = bioticStruct(),
spatial = NULL,
tune = c("random”, "grid"),
CV = 5L,

tune_steps = 20L,

alpha_cov

= seq(0, 1, 0.1),

alpha_coef = seq(0, 1, 0.1),

alpha_spatial = seq(@, 1, 0.1),

lambda_cov = 2*seq(-10, -1, length.out = 20),
lambda_coef = 2%seq(-10, -0.5, length.out = 20),
lambda_spatial = 2*seq(-10, -0.5, length.out = 20),

device = "cpu”,
n_cores NULL,
n_gpu = NULL,
sampling = 5000L,
blocks = 1L,
)
Arguments
Y species occurrence matrix
env matrix of environmental predictors or object of type 1inear, or DNN
biotic defines biotic (species-species associations) structure, object of type bioticStruct.
Alpha and lambda have no influence
spatial defines spatial structure, object of type 1inear, or DNN
tune tuning strategy, random or grid search
cv n-fold cross validation or list of test indices
tune_steps number of tuning steps
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alpha_cov weighting of 11 and 12 on covariances: (1 — «) * |cov| + a||cov||?
alpha_coef weighting of 11 and 12 on coefficients: (1 — ) * [coef| + al|coef||?
alpha_spatial weighting of 11 and 12 on spatial coefficients: (1 — ) * |coe fsp| + a|coe fsp]||?
lambda_cov overall regularization strength on covariances

lambda_coef overall regularization strength on coefficients

lambda_spatial overall regularization strength on spatial coefficients

device device, default cpu

n_cores number of cores for parallelization

n_gpu number of GPUs

sampling number of sampling steps for Monte Carlo integration
blocks blocks of parallel tuning steps

arguments passed to sjSDM, see sjSDM
Value
An S3 class of type *sjSDM_cv’ including the following components:

tune_results Data frame with tuning results.

short_summary Data frame with averaged tuning results.

summary Data frame with summarized averaged results.
settings List of tuning settings, see the arguments in DNN.
data List of Y, env (and spatial) objects.

config List of sjSDM settings, see arguments of sjSDM.
spatial Logical, spatial model or not.

Implemented S3 methods include sjSDM. tune, plot.sjSDM_cv, print.sjSDM_cv, and summary.sjSDM_cv

See Also

plot.sjSDM_cv, print.sjSDM_cv, summary.sjSDM_cv, sjSDM. tune

Examples

## Not run:
# simulate sparse community:
com = simulate_SDM(env = 5L, species = 25L, sites = 50L, sparse = 0.5)

# tune regularization:
tune_results = sjSDM_cv(Y = com$response,
env = com$env_weights,
tune = "random”, # random steps in tune-paramter space
CV = 2L, # 3-fold cross validation
tune_steps = 2L,
alpha_cov = seq(@, 1, 0.1),
alpha_coef = seq(@, 1, 0.1),
lambda_cov = seq(@, 0.1, 0.001),
lambda_coef = seq(@, 0.1, 0.001),
n_cores = 2L,
sampling = 100L,
# small models can be also run in parallel on the GPU
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iter = 2L # we can pass arguments to sjSDM via...

)

# print overall results:
tune_results

# summary (mean values over CV for each tuning step)
summary (tune_results)

# visualize tuning and best points:
# best = plot(tune_results, perf = "loglLik")

# fit model with best regularization paramter:
model = sjSDM.tune(tune_results)

summary (model)

## End(Not run)

summary.sjSDM Return summary of a fitted sjSDM model

Description

Return summary of a fitted sjSDM model

Usage
## S3 method for class 'sjSDM'
summary (object, ...)

Arguments
object a model fitted by sjSDM

optional arguments for compatibility with the generic function, no functionality
implemented

Value

The above matrix is silently returned.

summary.sjSDM_cv Return summary of a fitted sjSDM_cv model

Description

Return summary of a fitted sjSDM_cv model

Usage

## S3 method for class 'sjSDM_cv'
summary (object, ...)
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Arguments
object a model fitted by sjSDM_cv
optional arguments for compatibility with the generic function, no functionality
implemented
Value

Above data frame is silently returned.

update.sjSDM Update and re-fit a model call

Description

Update and re-fit a model call

Usage

## S3 method for class 'sjSDM'

update(object, env_formula = NULL, spatial_formula = NULL, biotic = NULL, ...)
Arguments

object of class ’sjSDM’

env_formula new environmental formula

spatial_formula
new spatial formula

biotic new biotic config

additional arguments

Value

An S3 class of type ’sjSDM’. See sjSDM for more information.
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