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ess Effective Sample Size Calculator

Description

Computes the effective sample size of MCMC chains, using the algorithm in Section 2.3 of the paper
by Madeline Thompson. The algorithm is taken from earlier work on ‘Initial Sequence Estimators’
by multiple authors.

Usage

ess(x, method = c("coda", "ise"))

Arguments

x Matrix object with each sample (possibly multivariate) as a row. Effective sam-
ple size calculation is done independently for each column of x.

method Method of calculating effective size. Current options are "coda" which calls
effectiveSize function in coda package, and "ise" which uses the ’Initial Se-
quence Estimators’ method described in Section 2.3 of Thompson (2010).

Value

Vector with effective sample sizes for the time series in each column of x.

Author(s)

Alireza S. Mahani, Asad Hasan, Marshall Jiang, Mansour T.A. Sharabiani

References

Thompson, Madeleine (2010) A Comparison of Methods for Computing Autocorrelation Time
https://arxiv.org/pdf/1011.0175v1.pdf

https://arxiv.org/pdf/1011.0175v1.pdf
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plot.sns Plotting "sns" Objects

Description

Method for visualizing the output of sns.run.

Usage

## S3 method for class 'sns'
plot(x, nburnin = max(nrow(x)/2, attr(x, "nnr"))
, select = if (length(x) <= 10) 1:5 else 1, ...)

Arguments

x Object of class "sns", typically the output of sns.run.

nburnin Number of burn-in iterations to discard before generating effective sample size,
histograms, and autocorrelation plots.

select Which plot types must be generated. See below for description.

... Arguments passed to/from other functions.

Value

plot.sns produces the following types of plots: 1) log-probability trace plot (vertical line, if
present, indicates transition from nr to mcmc mode), 2) trace plot of state variables (one per co-
ordinate; vertical line has same meaning as 1), 3) effective sample size by coordinate (horizontal
line indicates maximum effective size possible, equal to number of samples after discarding nburnin
initial iterations), 4) post-burnin state vector histograms (one per coordinate, vertical line indicates
post-burnin average, 5) autocorrelation plots, one per coordinate.

Author(s)

Alireza S. Mahani, Asad Hasan, Marshall Jiang, Mansour T.A. Sharabiani

References

Mahani A.S., Hasan A., Jiang M. & Sharabiani M.T.A. (2016). Stochastic Newton Sampler: The R
Package sns. Journal of Statistical Software, Code Snippets, 74(2), 1-33. doi:10.18637/jss.v074.c02

See Also

sns.run
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predict.sns Sample-based prediction using "sns" Objects

Description

Method for sample-based prediction using the output of sns.run.

Usage

## S3 method for class 'sns'
predict(object, fpred
, nburnin = max(nrow(object)/2, attr(object, "nnr"))
, end = nrow(object), thin = 1, ...)

## S3 method for class 'predict.sns'
summary(object
, quantiles = c(0.025, 0.5, 0.975)
, ess.method = c("coda", "ise"), ...)

## S3 method for class 'summary.predict.sns'
print(x, ...)

Arguments

object Object of class "sns" (output of sns.run) or "predict.sns" (output of predict.sns).

fpred Prediction function, accepting a single value for the state vector and producing
a vector of outputs.

nburnin Number of burn-in iterations discarded for sample-based prediction.

end Last iteration used in sample-based prediction.

thin One out of thin iterations within the specified range are used for sample-based
prediction.

quantiles Values for which sample-based quantiles are calculated.

ess.method Method used for calculating effective sample size. Default is to call effectiveSize
from package coda.

x An object of class "summary.predict.sns".

... Arguments passed to/from other functions.

Value

predict.sns produces a matrix with number of rows equal to the length of prediction vector
produces by fpred. Its numnber of columns is equal to the number of samples used within the
user-specified range, and after thinning (if any). summary.predict.sns produces sample-based
prediction mean, standard deviation, quantiles, and effective sample size.

Note

See package vignette for more details on SNS theory, software, examples, and performance.
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Author(s)

Alireza S. Mahani, Asad Hasan, Marshall Jiang, Mansour T.A. Sharabiani

References

Mahani A.S., Hasan A., Jiang M. & Sharabiani M.T.A. (2016). Stochastic Newton Sampler: The R
Package sns. Journal of Statistical Software, Code Snippets, 74(2), 1-33. doi:10.18637/jss.v074.c02

See Also

sns.run

Examples

## Not run:

# using RegressionFactory for generating log-likelihood and derivatives
library("RegressionFactory")

loglike.poisson <- function(beta, X, y) {
regfac.expand.1par(beta, X = X, y = y,
fbase1 = fbase1.poisson.log)

}

# simulating data
K <- 5
N <- 1000
X <- matrix(runif(N * K, -0.5, +0.5), ncol = K)
beta <- runif(K, -0.5, +0.5)
y <- rpois(N, exp(X %*% beta))

beta.init <- rep(0.0, K)
beta.smp <- sns.run(beta.init, loglike.poisson,

niter = 1000, nnr = 20, mh.diag = TRUE, X = X, y = y)

# prediction function for mean response
predmean.poisson <- function(beta, Xnew) exp(Xnew %*% beta)
ymean.new <- predict(beta.smp, predmean.poisson,

nburnin = 100, Xnew = X)
summary(ymean.new)

# (stochastic) prediction function for response
predsmp.poisson <- function(beta, Xnew)

rpois(nrow(Xnew), exp(Xnew %*% beta))
ysmp.new <- predict(beta.smp, predsmp.poisson

, nburnin = 100, Xnew = X)
summary(ysmp.new)

## End(Not run)
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sns Stochastic Newton Sampler (SNS)

Description

SNS is a Metropolis-Hastings MCMC sampler with a multivariate Gaussian proposal function re-
sulting from a local, second-order Taylor series expansion of log-density. The mean of the Gaus-
sian proposal is identical to the full Newton-Raphson step from the current point. During burn-in,
Newton-Raphson optimization can be performed to get close to the mode of the pdf which is unique
due to convexity, resulting in faster convergence. For high dimensional densities, state space par-
titioning can be used to improve mixing. Support for numerical differentiation is provided using
numDeriv package. sns is the low-level function for drawing one sample from the distribution.
For drawing multiple samples from a (fixed) distribution, consider using sns.run.

Usage

sns(x, fghEval, rnd = TRUE, gfit = NULL, mh.diag = FALSE
, part = NULL, numderiv = 0
, numderiv.method = c("Richardson", "simple")
, numderiv.args = list(), ...)

Arguments

x Current state vector.

fghEval Log-density to be sampled from. A valid log-density can have one of 3 forms:
1) return log-density, but no gradient or Hessian, 2) return a list of f and g for
log-density and its gradient vector, respectively, 3) return a list of f, g, and h
for log-density, gradient vector, and Hessian matrix. Missing derivatives are
computed numerically.

rnd Runs 1 iteration of Newton-Raphson optimization method (non-stochastic or
’nr’ mode) when FALSE. Runs Metropolis-Hastings (stochastic or ’mcmc’ mode)
for drawing a sample when TRUE.

gfit Gaussian fit at point init. If NULL then sns will compute a Gaussian fit at x.

mh.diag Boolean flag, indicating whether detailed MH diagnostics such as components
of acceptance test must be returned or not.

part List describing partitioning of state space into subsets. Each element of the list
must be an integer vector containing a set of indexes (between 1 and length(x)
or length(init)) indicating which subset of all dimensions to jointly sample.
These integer vectors must be mutually exclusive and collectively exhaustive,
i.e. cover the entire state space and have no duplicates, in order for the parti-
tioning to represent a valid Gibbs sampling approach. See sns.make.part and
sns.check.part.

numderiv Integer with value from the set 0,1,2. If 0, no numerical differentiation is per-
formed, and thus fghEval is expected to supply f, g and h. If 1, we expect
fghEval to provide f amd g, and Hessian will be calculated numerically. If
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2, fghEval only returns log-density, and numerical differentiation is needed to
calculate gradient and Hessian.

numderiv.method

Method used for numeric differentiation. This is passed to the grad and hessian
functions in numDeriv package. See the package documentation for details.

numderiv.args Arguments to the numeric differentiation method chosen in numderiv.method,
passed to grad and hessian functions in numDeriv. See package documenta-
tion for details.

... Other arguments to be passed to fghEval.

Value

sns returns the sample drawn as a vector, with attributes:

accept A boolean indicating whether the proposed point was accepted.

ll Value of the log-density at the sampled point.

gfit List containing Gaussian fit to pdf at the sampled point.

Note

1. Since SNS makes local Gaussian approximations to the density with the covariance matrix of the
Gaussian proposal being the log-density Hessian, there is a strict requirement for the log-density to
be concave.

2. Proving log-concavity for arbitrary probability distributions is non-trvial. However, distributions
generated by replacing parameters of a concave distribution with linear expressions are known to
be log-concave. This negative-definiteness invariance as well as expressions for full gradient and
Hessian in terms of derivatives of low-dimensional base distributions are discussed in the vignette.
The GLM expansion framework is available in the R package RegressionFactory.

3. See package vignette for more details on SNS theory, software, examples, and performance.

Author(s)

Alireza S. Mahani, Asad Hasan, Marshall Jiang, Mansour T.A. Sharabiani

References

Mahani A.S., Hasan A., Jiang M. & Sharabiani M.T.A. (2016). Stochastic Newton Sampler: The R
Package sns. Journal of Statistical Software, Code Snippets, 74(2), 1-33. doi:10.18637/jss.v074.c02

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1), 97-109.

Qi, Y., & Minka, T. P. (2002). Hessian-based markov chain monte-carlo algorithms. 1st Cape Cod
Workshop on Monte Carlo Methods.

See Also

sns.run, sns.fghEval.numaug
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Examples

## Not run:

# using RegressionFactory for generating log-likelihood and its derivatives
library(RegressionFactory)

loglike.poisson <- function(beta, X, y) {
regfac.expand.1par(beta, X = X, y = y,

fbase1 = fbase1.poisson.log)
}

# simulating data
K <- 5
N <- 1000
X <- matrix(runif(N * K, -0.5, +0.5), ncol = K)
beta <- runif(K, -0.5, +0.5)
y <- rpois(N, exp(X %*% beta))

beta.init <- rep(0.0, K)

# glm estimate, for reference
beta.glm <- glm(y ~ X - 1, family = "poisson",

start = beta.init)$coefficients

# running SNS in non-stochastic mode
# this should produce results very close to glm
beta.sns <- beta.init
for (i in 1:20)

beta.sns <- sns(beta.sns, loglike.poisson, X = X, y = y, rnd = F)

# comparison
all.equal(as.numeric(beta.glm), as.numeric(beta.sns))

# trying numerical differentiation
loglike.poisson.fonly <- function(beta, X, y) {

regfac.expand.1par(beta, X = X, y = y, fgh = 0,
fbase1 = fbase1.poisson.log)

}

beta.sns.numderiv <- beta.init
for (i in 1:20)

beta.sns.numderiv <- sns(beta.sns.numderiv, loglike.poisson.fonly
, X = X, y = y, rnd = F, numderiv = 2)

all.equal(as.numeric(beta.glm), as.numeric(beta.sns.numderiv))

# add numerical derivatives to fghEval outside sns
loglike.poisson.numaug <- sns.fghEval.numaug(loglike.poisson.fonly

, numderiv = 2)

beta.sns.numaug <- beta.init
for (i in 1:20)

# set numderiv to 0 to avoid repeating
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# numerical augmentation inside sns
beta.sns.numaug <- sns(beta.sns.numaug, loglike.poisson.numaug

, X = X, y = y, rnd = F, numderiv = 0)
all.equal(as.numeric(beta.glm), as.numeric(beta.sns.numaug))

## End(Not run)

sns.check.logdensity Utility function for validating log-density

Description

Utility function for validating log-density: 1) dimensional consistency of function argument, gra-
dient and Hessian, 2) finiteness of function, gradient and Hessian, 3) closeness of analytical and
numerical derivatives, and 4) negative definiteness of Hessian.

Usage

sns.check.logdensity(x, fghEval
, numderiv.method = c("Richardson", "complex")
, numderiv.args = list()
, blocks = append(list(1:length(x)), as.list(1:length(x)))
, dx = rep(1, length(x)), nevals = 100, negdef.tol = 1e-08, ...)

## S3 method for class 'sns.check.logdensity'
print(x, ...)

Arguments

x For sns.check.logdensity, initial point, around which a random collection of
points are generated to perform validation tests. For print.sns.check.logdensity,
an object of class sns.check.logdensity, typically the output of sns.check.logdensity
function.

fghEval Log-density to be validated. A valid log-density can have one of 3 forms: 1)
return log-density, but no gradient or Hessian, 2) return a list of f and g for log-
density and its gradient vector, respectively, 3) return a list of f, g, and h for
log-density, gradient vector, and Hessian matrix.

numderiv.method

Method used for numeric differentiation. This is passed to the grad and hessian
functions in numDeriv package. See the package documentation for details.

numderiv.args Arguments to the numeric differentiation method chosen in numderiv.method,
passed to grad and hessian functions in numDeriv. See package documenta-
tion for details.

blocks A list of state space subsets (identified by their positional indexes), for which
negative-definiteness of Hessian blocks are to be tested. The default is to test for
1) entire state space, and 2) each dimension individually.
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dx A vector of same length as x. For i’th dimension, nevals values are sampled
from a uniform distribution with min/max values equal to x[i]-0.5*dx[i] and
x[i]+0.5*dx[i], respectively. Vectors smaller than length(x) are extended
as needed by recycling the provided values for dx.

nevals Number of points in state space, for which validation tests will be performed.

negdef.tol Lower bound for absolute value of (negative) eigenvalues of Hessian, evaluated
at each of the nevals points in the state space. If one or more eigenvalues
have absolute values smaller than ngdef.tol, log-density is declared non-log-
concave at that point.

... Other arguments to be passed to fghEval.

Value

sns.check.logdensity returns a list of class sns.check.logdensity, with the following ele-
ments:

check.ld.struct

Boolean flag, indicating whether log-density fghEval has one of the 3 forms of
output, described above.

numderiv Integer with values of 0,1,2. A value of 0 means analytical gradient and Hes-
sian have been provided, and thus there is no need for numerical differentiation.
1 means analytical gradient is provided, but Hessian must be calculated numeri-
cally. 2 means both gradient and Hessian must be numerically calculated. Users
can pass this value to subsequent sns or sns.run calls.

check.length.g Boolean flag, indicating whether length of gradient vector (element g) returned
by fghEval equals length(x).

check.dim.h Boolean flag, indicating whether number of rows and columns of the Hessian
matrix (element h) returned by fghEval equal length(x).

x.mat Collection of state space vectors (one per row), for which validation tests are
performed. It has nevals rows and length(x) columns.

t.evals Time spent on evaluating fghEval on nevals points chosen randomly in the
neighborhood of x, as specified by dx. This includes log-density and, if pro-
vided, analytical evaluations of gradient and Hessian.

t.num.evals Time spent on evaluating the numeric version of fghEval, in which gradient
and Hessian are computed numerically, using grad and hessian functions in
the numDeriv package. Comparison of this number with t.evals provides the
user with insight into the relative speed of numerical differentiation compared
to analytical versions.

f.vec Vector of log-density values for state space vectors listed in x.mat.

g.mat.num Collection of numerically-computed gradient vectors for state space values listed
in x.mat, with the same dimension conventions.

is.g.num.finite

Boolean flag, indicating whether all numerically-computed gradient vectors have
finite values.
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h.array.num Collection of numerically-computed Hessian matrices at points listed in x.mat.
First dimension is of length nevals, and the remaining two dimensions equal
length(x).

is.h.num.finite

Boolean flag, indicating whether all numerically-computed Hessian matrices
have finite values.

g.mat Collection of analytically-computed gradient vectors for state space values listed
in x.mat, with the same dimension conventions. This is only available if fghEval
has a g field; otherwise NA.

is.g.finite Boolean flag (if available), indicating whether all analytically-computed gradi-
ent vectors have finite values (if available).

g.diff.max If available, maximum relative difference between analytical and numerical gra-
dient vectors, over all nevals points in x.mat. Relative diference is defined as
L2 norm of difference between the two gradient vectors, divided by the L2 norm
of the analytical gradient vector.

h.array If available, collection of analytically-computed Hessian matrices at points listed
in x.mat. Dimensional conventions are the same as h.array.num.

is.h.finite Boolean flag (if available), indicating whether all analytically-computed Hessian
matrices have finite values.

h.diff.max If available, maximum relative difference between analytical and numerical Hes-
sian matrices, over all nevals points in x.mat. Relative difference is defined as
the Frobenius norm of difference of analytical and numerical Hessian matrices,
divided by the Frobenius norm of analytical Hessian.

is.negdef.num Boolean flag, indicating whether numerical Hessian is negative-definite at all
state space points indicated in x.mat.

is.negdef Boolean flag, indicating whether analytical Hessian is negative-definite at all
state space points indicated in x.mat.

Note

1. Validation tests performed in sns.check.logdensity cannot prove that a log-density is twice-
differentiable, or globally concave. However, when e.g. log-density Hessian is seen to be non-
negative-definite at one of the points tested, we can definitively say that the Hessian is not globally
negative-definite, and therefore sns should not be used for sampling from this distribution. Users
must generally consider this function as a supplement to analytical work.

2. See package vignette for more details on SNS theory, software, examples, and performance.

Author(s)

Alireza S. Mahani, Asad Hasan, Marshall Jiang, Mansour T.A. Sharabiani

References

Mahani A.S., Hasan A., Jiang M. & Sharabiani M.T.A. (2016). Stochastic Newton Sampler: The R
Package sns. Journal of Statistical Software, Code Snippets, 74(2), 1-33. doi:10.18637/jss.v074.c02
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Examples

## Not run:

# using RegressionFactory for generating log-likelihood and its derivatives
library(RegressionFactory)

loglike.poisson <- function(beta, X, y) {
regfac.expand.1par(beta, X = X, y = y,

fbase1 = fbase1.poisson.log)
}

# simulating data
K <- 5
N <- 1000
X <- matrix(runif(N * K, -0.5, +0.5), ncol = K)
beta <- runif(K, -0.5, +0.5)
y <- rpois(N, exp(X %*% beta))

beta.init <- rep(0.0, K)

my.check <- sns.check.logdensity(beta.init, loglike.poisson
, X = X, y = y, blocks = list(1:K))

my.check

# mistake in log-likelihood gradient
loglike.poisson.wrong <- function(beta, X, y) {

ret <- regfac.expand.1par(beta, X = X, y = y,
fbase1 = fbase1.poisson.log)

ret$g <- 1.2 * ret$g
return (ret)

}
# maximum relative diff in gradient is now much larger
my.check.wrong <- sns.check.logdensity(beta.init

, loglike.poisson.wrong, X = X, y = y, blocks = list(1:K))
my.check.wrong

# mistake in log-likelihood Hessian
loglike.poisson.wrong.2 <- function(beta, X, y) {

ret <- regfac.expand.1par(beta, X = X, y = y,
fbase1 = fbase1.poisson.log)

ret$h <- 1.2 * ret$h
return (ret)

}
# maximum relative diff in Hessian is now much larger
my.check.wrong.2 <- sns.check.logdensity(beta.init

, loglike.poisson.wrong.2, X = X, y = y, blocks = list(1:K))
my.check.wrong.2

## End(Not run)
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sns.fghEval.numaug Utility function for augmentation of a log-density function with numer-
ical gradient and Hessian as needed

Description

Augmenting a log-density with numerical gradient and Hessian, so it can be used by sns or sns.run.
This augmentation will also be done inside the function, if the value of numderiv parameter passed
to sns and sns.run is 1 or 2. The advantage of using sns.fghEval.numaug outside these functions
is efficiency, since the agumentation code will not have to be executed in every function call. Users
must set numderiv to 0 when calling sns or sns.run if calling sns.fghEval.numaug first. See
example.

Usage

sns.fghEval.numaug(fghEval, numderiv = 0
, numderiv.method = c("Richardson", "simple")
, numderiv.args = list())

Arguments

fghEval Log-density to be sampled from. A valid log-density can have one of 3 forms:
1) return log-density, but no gradient or Hessian, 2) return a list of f and g for
log-density and its gradient vector, respectively, 3) return a list of f, g, and h
for log-density, gradient vector, and Hessian matrix. Missing derivatives are
computed numerically.

numderiv This must be matched with fghEval: Integer with value from the set 0,1,2. If
0, no numerical differentiation is performed, and thus fghEval is expected to
supply f, g and h. If 1, we expect fghEval to provide f amd g, and Hessian will
be calculated numerically. If 2, fghEval only returns log-density, and numerical
differentiation is needed to calculate gradient and Hessian.

numderiv.method

Method used for numeric differentiation. This is passed to the grad and hessian
functions in numDeriv package. See the package documentation for details.

numderiv.args Arguments to the numeric differentiation method chosen in numderiv.method,
passed to grad and hessian functions in numDeriv. See package documenta-
tion for details.

Value

A function, accepting same arguments as fghEval, but guaranteed to return the original log-density,
plus gradient and Hessian (both of which could possibly by numerically calculated). If numderiv=0,
fghEval is returned without change. The function will return log-density, gradient and Hessian as
elements f, g and h of a list.
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Note

See package vignette for more details on SNS theory, software, examples, and performance.

Author(s)

Alireza S. Mahani, Asad Hasan, Marshall Jiang, Mansour T.A. Sharabiani

References

Mahani A.S., Hasan A., Jiang M. & Sharabiani M.T.A. (2016). Stochastic Newton Sampler: The R
Package sns. Journal of Statistical Software, Code Snippets, 74(2), 1-33. doi:10.18637/jss.v074.c02

See Also

sns, sns.run

sns.make.part Utility Functions for Creating and Validating State Space Partitions

Description

Utility functions for creating and validating state space partitions, to be used in SNS for improving
the mixing of sampled chains for high-dimensional posteriors.

Usage

sns.make.part(K, nsubset, method = "naive")
sns.check.part(part, K)

Arguments

K Dimensionality of state space.

nsubset Number of subsets to partition the state space dimensions into.

method Method used for state space partitioning. Currently, only naive method is im-
plemented, where coordinates are distributed evenly (or as evenly as possible)
across subsets.

part A list of length nsubset, with each element a vector of integer values, represent-
ing the coordinates belonging to a subset. This list is the output of sns.make.part.

Value

sns.make.part produces a list of integer vectors, each containing coordinates belonging to the
same subset. sns.check.part produces a boolean flag, indicating whether or not the partition list
is valid or not. The subset members must constitute a mutually-exclusive, collectively-exhaustive
set relative to 1:K.
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Author(s)

Alireza S. Mahani, Asad Hasan, Marshall Jiang, Mansour T.A. Sharabiani

References

Mahani A.S., Hasan A., Jiang M. & Sharabiani M.T.A. (2016). Stochastic Newton Sampler: The R
Package sns. Journal of Statistical Software, Code Snippets, 74(2), 1-33. doi:10.18637/jss.v074.c02

See Also

sns, sns.run

Examples

# creating a valid partition of a 6-dimensional state space
my.part.valid <- list(c(1,2,3), c(4,5,6))
is.valid.1 <- sns.check.part(my.part.valid, 6)
cat("is partition valid: ", is.valid.1, "\n")

# creating an invalid partition of a 6-dimensional state space
# (coordinate 4 is missing)
my.part.invalid <- list(c(1,2,3), c(5,6))
is.valid.2 <- sns.check.part(my.part.invalid, 6)
cat("is partition valid: ", is.valid.2, "\n")

sns.run Drawing multiple samples using Stochastic Newton Sampler

Description

This is a wrapper around sns, allowing one to draw multiple samples from a distribution while
collecting diagnostic information.

Usage

sns.run(init, fghEval, niter = 100, nnr = min(10, round(niter/4))
, mh.diag = FALSE, part = NULL, print.level = 0
, report.progress = ceiling(niter/10)
, numderiv = 0, numderiv.method = c("Richardson", "simple")
, numderiv.args = list()
, ...)
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Arguments

init Initial value for the MCMC chain.

fghEval Log-density to be sampled from. A valid log-density can have one of 3 forms:
1) return log-density, but no gradient or Hessian, 2) return a list of f and g for
log-density and its gradient vector, respectively, 3) return a list of f, g, and h
for log-density, gradient vector, and Hessian matrix. Missing derivatives are
computed numerically.

niter Number of iterations to perform (in ‘nr’ and ‘mcmc’ mode combined).

nnr Number of initial iterations to spend in ‘nr’ mode.

mh.diag Boolean flag, indicating whether detailed MH diagnostics such as components
of acceptance test must be returned or not.

part List describing partitioning of state space into subsets. Each element of the list
must be an integer vector containing a set of indexes (between 1 and length(x)
or length(init)) indicating which subset of all dimensions to jointly sample.
These integer vectors must be mutually exclusive and collectively exhaustive,
i.e. cover the entire state space and have no duplicates, in order for the parti-
tioning to represent a valid Gibbs sampling approach. See sns.make.part and
sns.check.part.

print.level If greater than 0, print sampling progress report.
report.progress

Number of sampling iterations to wait before printing progress reports.

numderiv Integer with value from the set 0,1,2. If 0, no numerical differentiation is per-
formed, and thus fghEval is expected to supply f, g and h. If 1, we expect
fghEval to provide f amd g, and Hessian will be calculated numerically. If
2, fghEval only returns log-density, and numerical differentiation is needed to
calculate gradient and Hessian.

numderiv.method

Method used for numeric differentiation. This is passed to the grad and hessian
functions in numDeriv package. See the package documentation for details.

numderiv.args Arguments to the numeric differentiation method chosen in numderiv.method,
passed to grad and hessian functions in numDeriv. See package documenta-
tion for details.

... Other parameters to be passed to fghEval.

Value

sns.run returns an object of class sns with elements:

samplesMat A matrix object with nsample rows and K cols.

acceptance Metropolis proposal percentage acceptance.

burn.iters Number of burn-in ierations.

sample.time Time in seconds spent in sampling.

burnin.time Time in seconds spent in burn-in.
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Note

1. sns.run cannot be used if SNS is being run as part of a Gibbs cycle, such that the conditional
distribution being sampled by SNS changes from one iteration to next. In such cases, sns must be
used instead, inside an explicit Gibbs-cycle for loop.

2. See package vignette for more details on SNS theory, software, examples, and performance.

Author(s)

Alireza S. Mahani, Asad Hasan, Marshall Jiang, Mansour T.A. Sharabiani

References

Mahani A.S., Hasan A., Jiang M. & Sharabiani M.T.A. (2016). Stochastic Newton Sampler: The R
Package sns. Journal of Statistical Software, Code Snippets, 74(2), 1-33. doi:10.18637/jss.v074.c02

See Also

sns, summary.sns, plot.sns, predict.sns

Examples

## Not run:

# using RegressionFactory for generating log-likelihood and its derivatives
library(RegressionFactory)

loglike.poisson <- function(beta, X, y) {
regfac.expand.1par(beta, X = X, y = y,
fbase1 = fbase1.poisson.log)

}

# simulating data
K <- 5
N <- 1000
X <- matrix(runif(N * K, -0.5, +0.5), ncol = K)
beta <- runif(K, -0.5, +0.5)
y <- rpois(N, exp(X

beta.init <- rep(0.0, K)

# glm estimate (ML), for reference
beta.glm <- glm(y ~ X - 1, family = "poisson",

start = beta.init)$coefficients

# sampling of likelihood
beta.smp <- sns.run(init = beta.init

, fghEval = loglike.poisson, niter = 1000
, nnr = 20, X = X, y = y)

smp.summ <- summary(beta.smp)

# compare mean of samples against ML estimate (from glm)
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cbind(beta.glm, smp.summ$smp$mean)

# trying numerical differentiation
loglike.poisson.fonly <- function(beta, X, y) {

regfac.expand.1par(beta, X = X, y = y, fgh = 0,
fbase1 = fbase1.poisson.log)

}
beta.smp <- sns.run(init = beta.init

, fghEval = loglike.poisson.fonly, niter = 1000, nnr = 20
, X = X, y = y, numderiv = 2)

smp.summ <- summary(beta.smp)
cbind(beta.glm, smp.summ$smp$mean)

## End(Not run)

summary.sns Summarizing "sns" Objects

Description

Methods for summarizing the output of sns.run, and for printing the summary.

Usage

## S3 method for class 'sns'
summary(object, quantiles = c(0.025, 0.5, 0.975)
, pval.ref = 0.0, nburnin = max(nrow(object)/2, attr(object, "nnr"))
, end = nrow(object), thin = 1, ess.method = c("coda", "ise"), ...)

## S3 method for class 'summary.sns'
print(x, ...)

Arguments

object An object of class "sns", typically the output of sns.run.
quantiles Values for which sample-based quantiles are calculated.
pval.ref Reference value for state space variables, used for calculating sample-based p-

values.
nburnin Number of initial iterations to discard before calculating the sample statistics. A

warning is issued if this number is smaller than the initial iterations run in NR
mode.

end Last iteration to use for calculating sample statistics. Defaults to last iteration.
thin One out of thin samples are kept for calculating sample statistics. Default is 1,

using all samples within specified range.
ess.method Method used for calculating effective sample size. Default is to call effectiveSize

from package coda.
x An object of class "summary.sns", typically the output of summary.sns.
... Arguments passed to/from other functions.
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Value

summary.sns returns a list with these elements:

K Dimensionality of state space.

nnr Number of NR (Newton-Raphson) iterations performed at the beginning.

nburnin Number of burn-in iterations. These are discarded before calculating sample
statistics.

end Last iteration to use for calculating sample statistics.

thin One out of every thin iterations within the specified range is used for calculating
sample statistics.

niter Total iterations, including NR and MCMC modes.

nsmp Number of samples within specified range (before applying thinning).

nseq Number of samples used for calculating sample statistics (after applying thin-
ning).

npart Number of subsets used in state space partitioning. If no partitioning is done,
the value is 1.

accept.rate Acceptance rate for the MH transition proposals, calculated over nsmp iterations.

reldev.mean Mean relative deviation from quadratic approximation, defined as difference be-
tween actual log-density change and the value predicted from quadratic fit at
density maximum, divided by the actual change. The location of density maxi-
mum is assumed to be the value at the end of the last NR iteration. Therefore,
for this measure to be accurate, users must ensure nnr is sufficiently large to
allow for convegrence of the optimization phase.

pval.ref Same as input.

ess.method Same as input.

smp A list with elements mean, sd, ess, quantiles, pval representing sample-based
mean, standard deviation, effective size, quantiles and sample-based p-values,
based on specified range and using thinning (if specified).

Author(s)

Alireza S. Mahani, Asad Hasan, Marshall Jiang, Mansour T.A. Sharabiani

References

Mahani A.S., Hasan A., Jiang M. & Sharabiani M.T.A. (2016). Stochastic Newton Sampler: The R
Package sns. Journal of Statistical Software, Code Snippets, 74(2), 1-33. doi:10.18637/jss.v074.c02

See Also

sns.run



Index

∗ Metropolis
sns, 6
sns.run, 15

∗ mcmc
sns, 6
sns.run, 15

∗ multivariate
sns, 6
sns.run, 15

∗ sampling
sns, 6
sns.run, 15

ess, 2

plot.sns, 3, 17
predict.sns, 4, 17
print.sns.check.logdensity

(sns.check.logdensity), 9
print.summary.predict.sns

(predict.sns), 4
print.summary.sns (summary.sns), 18

sns, 6, 14, 15
sns.check.logdensity, 9
sns.check.part (sns.make.part), 14
sns.fghEval.numaug, 7, 13
sns.make.part, 14
sns.run, 3–5, 7, 14, 15, 15, 18, 19
summary.predict.sns (predict.sns), 4
summary.sns, 17, 18

20


	ess
	plot.sns
	predict.sns
	sns
	sns.check.logdensity
	sns.fghEval.numaug
	sns.make.part
	sns.run
	summary.sns
	Index

