
Package ‘tcpl’
October 6, 2023

Title ToxCast Data Analysis Pipeline

Version 3.1.0

Description A set of tools for processing and modeling high-throughput and
high-content chemical screening data. The package was developed for the
the chemical screening data generated by the US EPA ToxCast program, but
can be used for diverse chemical screening efforts.

URL https://github.com/USEPA/CompTox-ToxCast-tcpl

Depends R (>= 3.5.0)

Imports data.table (>= 1.9.4), DBI, RMariaDB, numDeriv, RColorBrewer,
utils, stats, methods, graphics, grDevices, sqldf, dplyr,
tidyr, plotly, tcplfit2, ggplot2, gridExtra, stringr

Suggests roxygen2, knitr, prettydoc, rmarkdown, htmlTable, testthat
(>= 3.0.0), reshape2, viridis, kableExtra, colorspace,
magrittr, vdiffr

License MIT + file LICENSE

LazyData true

RoxygenNote 7.2.3

VignetteBuilder knitr

Encoding UTF-8

Config/testthat/edition 3

NeedsCompilation no

Author Richard S Judson [ctb, ths],
Dayne L Filer [aut],
Jason Brown [cre],
Sarah E Davidson-Fritz [ctb] (<https://orcid.org/0000-0002-2891-9380>),
Madison Feshuk [ctb] (<https://orcid.org/0000-0002-1390-6405>),
Lori Kolaczkowski [ctb],
Kurt Dunham [ctb],
Carter Thunes [ctb],
Ashley Ko [ctb],
Todd Zurlinden [ctb],

1

https://github.com/USEPA/CompTox-ToxCast-tcpl
https://orcid.org/0000-0002-2891-9380
https://orcid.org/0000-0002-1390-6405

2 R topics documented:

Parth Kothiya [ctb],
Woodrow R Setzer [ctb],
Matthew T Martin [ctb, ths],
Katie Paul Friedman [ctb] (<https://orcid.org/0000-0002-2710-1691>)

Maintainer Jason Brown <brown.jason@epa.gov>

Repository CRAN

Date/Publication 2023-10-06 19:50:02 UTC

R topics documented:
.buildAssayQ . 4
.convertNames . 4
.load6DR . 5
.plateHeat . 5
.prepField . 6
blineShift . 6
chdat . 7
check_tcpl_db_schema . 7
Configure functions . 8
flareFunc . 9
Hill model utilites . 10
interlaceFunc . 11
invitrodb_dd . 12
is.odd . 12
Load assay information . 13
lu . 14
lw . 15
mc1 . 15
mc2 . 16
MC2_Methods . 17
mc3 . 19
MC3_Methods . 20
mc4 . 23
MC4_Methods . 24
mc5 . 25
MC5_Methods . 26
mc6 . 28
MC6_Methods . 29
mcdat . 30
mc_vignette . 31
Method functions . 39
Models . 41
Query functions . 43
Register/update annotation . 44
registerMthd . 46
sc1 . 47
SC1_Methods . 48

https://orcid.org/0000-0002-2710-1691

R topics documented: 3

sc2 . 50
SC2_Methods . 51
scdat . 53
sc_vignette . 53
sink.reset . 55
tcplAddModel . 56
tcplAICProb . 57
tcplAppend . 58
tcplCascade . 58
tcplCode2CASN . 59
tcplCytoPt . 60
tcpldbStats . 62
tcplDefine . 62
tcplDelete . 63
tcplFit . 64
tcplFit2 . 65
tcplFit2_nest . 66
tcplFit2_unnest . 66
tcplGetAeid . 67
tcplggplot . 67
tcplHit2 . 68
tcplListFlds . 68
tcplLoadChem . 69
tcplLoadClib . 70
tcplLoadConcUnit . 71
tcplLoadData . 72
tcplLoadUnit . 73
tcplLvlCount . 74
tcplMakeAeidMultiPlts . 75
tcplMakeAeidPlts . 76
tcplMakeChidMultiPlts . 77
tcplMultiplot . 78
tcplPlot . 79
tcplPlotFitc . 80
tcplPlotFits . 81
tcplPlotlyPlot . 83
tcplPlotM4ID . 83
tcplPlotPlate . 84
tcplPrepOtpt . 85
tcplRun . 86
tcplSubsetChid . 88
tcplVarMat . 89
tcplWriteData . 91
tcplWriteLvl0 . 92
write_lvl_4 . 93

Index 94

4 .convertNames

.buildAssayQ Generate query for assay information

Description

.buildAssayQ generates a query string to load assay information

Usage

.buildAssayQ(out, tblo, fld = NULL, val = NULL, add.fld = NULL)

Arguments

out Character, the default fields to include

tblo Integer, the order to send the fields to prepOutput

fld Character, the field(s) to query/subset on

val List, vectors of values for each field to query/subset on. Must be in the same
order as ’fld’.

add.fld Character, additional field(s) to include, but not query/ subset on

Value

A character containing the query to send to tcplQuery

.convertNames Convert assay names to their abbreviations

Description

.convertNames converts the assay names as they appear in the tcpl database to their respective
abbreviations

Usage

.convertNames(names)

Arguments

names Character, strings to convert

Value

The same character vector given with any name strings converted to the abbreviated version

.load6DR 5

.load6DR Load data for tcpl6

Description

.load6DR loads dose-response data for tcpl6.

Usage

.load6DR(ae)

Arguments

ae String aeid to query on

.plateHeat Plot plate heatmap

Description

Plot plate heatmap, to be used with tcplPlotPlate

Usage

.plateHeat(vals, rowi, coli, wllt, wllq, rown, coln, main, arng)

Arguments

vals Numeric, the well values

rowi Integer, the row index

coli Integer, the column index

wllt Character, the well type

wllq Logical, the well quality

rown Integer, the number of rows on the plate

coln Integer, the number of columns on the plate

main Character of length 1, the title/main

arng Numeric of length 2, the minimum and maximum values to constrain the color
scale

Note

Optimized for an output with height = 20/3, width = 10, and pointsize = 10

6 blineShift

.prepField Paste appropriate table name to field name

Description

Paste appropriate table name to field name

Usage

.prepField(fld, tbl, db)

Arguments

fld Character, the table fields

tbl Character, the possible tables

db Character, the database containing the tables

Details

The function loops through the given tables, and for each field i it assigns the last table containing i
to i. ORDER OF FLD MATTERS!!

blineShift Shift the baseline to 0

Description

blineShift Takes in dose-response data and shifts the baseline to 0 based on the window.

Usage

blineShift(resp, logc, wndw)

Arguments

resp Numeric, the response values

logc Numeric, the log10 concentration values

wndw Numeric, the threshold window

Value

A numeric vector containing the shifted response values

Note

This function is not exported and is not intended to be used by the user.

chdat 7

See Also

mc3_mthds, mc3

chdat Chemical library of tested chemicals in the example datasets with the
corresponding sample IDs.

Description

Chemical library of tested chemicals in the example datasets with the corresponding sample IDs.

Usage

chdat

Format

A data frame with 6 rows and 6 variables:

spid sample ID

casn Chemical Abstract Service(CAS) number

chnm chemical name

dsstox_substance_id chemical-specific DTXSID

code CAS number compressed into numeric string

chid unique chemical ID number for tcpl

Source

ToxCast database

check_tcpl_db_schema Function that checks if the most recent v3 table schema is used in the
database schema

Description

Function that checks if the most recent v3 table schema is used in the database schema

Usage

check_tcpl_db_schema()

Value

boolean TRUE if param tables are listed in schema FALSE otherwise

8 Configure functions

Examples

Not run:
#connect to database first with tcplConf
tcplConf(user=user,
pass= pass,
db=dbname,
drvr='MySQL',
host=hostname)

#check if it is part of the new schema
new_schema <- check_tcpl_db_schema()

End(Not run)

Configure functions Functions for configuring the tcpl package

Description

These functions are used to configure the tcpl settings.

Usage

tcplConf(drvr = NULL, user = NULL, pass = NULL, host = NULL, db = NULL, ...)

tcplConfDefault()

tcplConfExample()

tcplConfList(show.pass = FALSE)

tcplConfLoad(list.new = TRUE)

tcplConfReset()

tcplConfSave()

Arguments

drvr Character of length 1, which database driver to use
user Character of length 1, the database server username
pass Character of length 1, the database server password
host Character of length 1, the database server
db Character of length 1, the name of the tcpl database
... Additional arguments that should be passed to dbConnect function
show.pass Logical, should the password be returned
list.new Logical of length 1, should the new settings be printed?

flareFunc 9

Details

Currently, the tcpl package only supports the "MySQL" and "tcplLite" database drivers.

The settings can be stored in a configuration file to make the using the package more user-friendly.
To create the configuration file, the user must first create a system environment variable (’TCPL_CONF’)
that points to to the file. There is more information about system environment variables in Startup
and Sys.getenv. Briefly, the user needs to modify the ’.Renviron’ file in their home directory. If
the file does not exist, create it, and add the following line:

TCPL_CONF=path/to/confFile.conf

Here ’path/to/confFile.conf’ can be any path to a file. One suggestion would be to include .tcplConf
in the home directory, e.g. TCPL_CONF=~/.tcplConf. Note, ’~’ may not indicate the home direc-
tory on every operating system. Once the environment variable is added, the user can change the
settings using tcplConf, then save the settings to the file given by the TCPL_CONF environment
variable running tcplConfSave().

tcplConf changes options to set the tcpl-specific options, most importantly to configure the con-
nection to the tcpl databases. tcplConf will only change non-null values, and can be used to change
a single value if needed.

tcplConfSave modifies the configuration file to reflect the current tcpl settings.

tcplConfList lists the values assigned to the tcpl global options.

tcplConfLoad updates the tcpl settings to reflect the current configuration file.

tcplConfDefault changes the options to reflect the default settings for the example tcplLite
database, i.e. local directory, but does not alter the configuration file.

tcplConfReset is used to generate the initial configuration script, and can be used to reset or
regenerate the configuration script by the user.

flareFunc Calculate the weighted mean of a square to detect plate flares

Description

flareFunc calculates the weighted mean of square regions to detect plate flares.

Usage

flareFunc(val, coli, rowi, apid, r)

Arguments

val Numeric, the well values

coli Integer, the well column index

rowi Integer, the well row index

apid Character, the assay plate id

r Integer, the number of wells from the center well (in one direction) to make the
square

10 Hill model utilites

See Also

MC6_Methods, Method functions, mc6

Hill model utilites Functions to solve the Hill model

Description

These functions solve for Hill model parameters.

Usage

tcplHillACXX(XX, tp, ga, gw, bt = 0)

tcplHillConc(val, tp, ga, gw, bt = 0)

tcplHillVal(logc, tp, ga, gw, bt = 0)

Arguments

XX Numeric, the activity level (percentage of the top value)

tp Numeric, the top value from the Hill model

ga Numeric, the logAC50 value from the Hill model

gw Numeric, the Hill coefficient from the Hill model

bt Numeric, the bottom value from the Hill model

val Numeric, the activity value

logc Numeric, the log concentration

Details

tcplHillVal computes the value of the Hill model for a given log concentration.

tcplHillACXX computes the activity concentration for a Hill model for a given activity level.

tcplHillConc computes the Hill model concentration for a given value.

Examples

The following code gives examples for a Hill model with a top of 50,
bottom of 0, AC50 of 1 and Hill coefficient of 1.
tcplHillVal calculates activity value given a concentration. tcplHillVal
will return the tp/2 when logc equals ga:
tcplHillVal(logc = 1, tp = 50, ga = 1, gw = 1, bt = 0)

Here, tcplHillConc returns the concentration where the value equals 20
tcplHillConc(val = 20, tp = 50, ga = 1, gw = 1, bt = 0)

Note how this differs from tcplHillACXX:

interlaceFunc 11

tcplHillACXX(XX = 20, tp = 50, ga = 1, gw = 1, bt = 0)

tcplHillACXX is based on the top value and allows the user to calculate
specifc activity concentrations based on a percentage of the top value

For example, we can calculate the value for the concentration 0.25, then
use that value to check the other two functions.

value <- tcplHillVal(logc = 0.25, tp = 50, ga = 1, gw = 1, bt = 0)
c1 <- tcplHillConc(val = value, tp = 50, ga = 1, gw = 1, bt = 0)
c2 <- tcplHillACXX(XX = value/50*100, tp = 50, ga = 1, gw = 1, bt = 0)
all.equal(0.25, c1, c2)

Notice, the value had to be transformed to a percentage of the top value
when using tcplHillACXX

interlaceFunc Calculate the weighted mean of a square to detect interlace effect

Description

interlaceFunc calculates the distance weighted mean of square regions from a 384-well plate that
is interlaced onto a 1536 well plate to detect non-random signals coming from the source plate

Usage

interlaceFunc(val, intq, coli, rowi, apid, r)

Arguments

val Numeric, the well values

intq Numeric, interlace quadrant

coli Integer, the well column index

rowi Integer, the well row index

apid Character, the assay plate id

r Integer, the number of wells from the center well (in one direction) to make the
square

See Also

MC6_Methods, Method functions, mc6

12 is.odd

invitrodb_dd Short descriptions of fields for different tables are stored in a data
dictionary.

Description

Short descriptions of fields for different tables are stored in a data dictionary.

Usage

invitrodb_dd

Format

A data frame with 44 rows and 3 variables:

invitrodb_table Table of the data dictionary

invitrodb_field Field of the data dictionary

description Description

Source

ToxCast database

is.odd Check for odd numbers

Description

is.odd takes an integer vector, x, and returns TRUE for odd integers.

Usage

is.odd(x)

Arguments

x An integer

Value

TRUE for odd integers and FALSE for even integers.

See Also

Other tcpl abbreviations: lu(), lw(), sink.reset()

Load assay information 13

Load assay information

Functions for loading assay information

Description

These functions query the tcpl databases and returns a data.table with assay ID and name informa-
tion. More information about the assay hierarchy is available in the overview vignette.

Usage

tcplLoadAcid(fld = NULL, val = NULL, add.fld = NULL)

tcplLoadAeid(fld = NULL, val = NULL, add.fld = NULL)

tcplLoadAid(fld = NULL, val = NULL, add.fld = NULL)

tcplLoadAsid(fld = NULL, val = NULL, add.fld = NULL)

Arguments

fld Character, the field(s) to query/subset on

val List, vectors of values for each field to query/subset on. Must be in the same
order as ’fld’.

add.fld Character, additional field(s) to include, but not query/ subset on

Details

Each element in the assay hierarchy has its own function, loading the ID and name for the given
assay element. For example, tcplLoadAsid will return the assay source ID (asid) and assay source
name (asnm).

Value

A data.table containing the ID, name, and any additional fields.

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
TCPLlite <- file.path(system.file(package = "tcpl"), "example")
tcplConf(db = TCPLlite, user = NA, host = NA, drvr = "tcplLite")

The load assay functions can be used without any parameters to list the
full list of registered assay elements:
tcplLoadAsid()
tcplLoadAeid()

14 lu

Similarly, the user can add fields without doing any element selection:
tcplLoadAeid(add.fld = c("asid", "aid", "acid"))

Or, the user can look only at a subset:
tcplLoadAeid(fld = "aeid", val = 1, add.fld = "asid")

The field can be any value in one of the corresponding assay element
tables, but the functions also recognize the abbreviated version of
the name fields.
tcplListFlds("assay")
a1 <- tcplLoadAeid(fld = "anm", val = "Steroidogenesis")
a2 <- tcplLoadAeid(fld = "assay_name", val = "Steroidogenesis")
identical(a1, a2)

Reset configuration
options(conf_store)

lu Abbreviation for length(unique(x))

Description

lu takes a logical vector, x, and returns length(unique(x)).

lu takes a logical vector, x, and returns length(unique(x)).

Usage

lu(x)

lu(x)

Arguments

x A logical

Value

The unique of the TRUE values in x

The unique of the TRUE values in x

See Also

unique, which

unique, which

Other tcpl abbreviations: is.odd(), lw(), sink.reset()

Other tcpl abbreviations: is.odd(), lw(), sink.reset()

lw 15

lw Abbreviation for length(which(x))

Description

lw takes a logical vector, x, and returns length(which(x)).

lw takes a logical vector, x, and returns length(which(x)).

Usage

lw(x)

lw(x)

Arguments

x A logical

Value

The length of the TRUE values in x

The length of the TRUE values in x

See Also

length, which

length, which

Other tcpl abbreviations: is.odd(), lu(), sink.reset()

Other tcpl abbreviations: is.odd(), lu(), sink.reset()

mc1 Perform level 1 multiple-concentration processing

Description

mc1 loads level 0 data from the tcpl database for the given id and performs level 1 multiple-
concentration processing. The processed data is then loaded into the mc1 table and all subsequent
data is deleted with tcplCascade. See details for more information.

The individual processing functions are no longer exported, as it is typically more convenient and
suggested to use the tcplRun wrapper function.

Usage

mc1(ac, wr = FALSE)

16 mc2

Arguments

ac Integer of length 1, assay component id (acid) for processing.

wr Logical, whether the processed data should be written to the tcpl database

Details

Level 1 processing includes defining the concentration and replicate index, cndx and repi, respec-
tively.

Value

A boolean of length 1, indicating the success of the processing, or when ’wr’ is FALSE, a list
where the first element is a boolean indicating the success of processing and the second element is
a data.table containing the processed data

See Also

Other multiple-concentration: mc2(), mc3(), mc4(), mc5(), mc6()

mc2 Perform level 2 multiple-concentration processing

Description

mc2 loads level 1 data from the tcpl database for the given id and performs level 2 multiple-
concentration processing. The processed data is then loaded into the mc2 table and all subsequent
data is deleted with tcplCascade. See details for more information.

The individual processing functions are no longer exported, as it is typically more convenient and
suggested to use the tcplRun wrapper function.

Usage

mc2(ac, wr = FALSE)

Arguments

ac Integer of length 1, assay component id (acid) for processing.

wr Logical, whether the processed data should be written to the tcpl database

Details

Level 2 multiple-concentration processing includes defining the corrected value, cval, based on the
correction methods listed in the mc2_acid and mc2_methods tables.

MC2_Methods 17

Value

A boolean of length 1, indicating the success of the processing, or when ’wr’ is FALSE, a list
where the first element is a boolean indicating the success of processing and the second element is
a data.table containing the processed data

See Also

Method functions, MC2_Methods

Other multiple-concentration: mc1(), mc3(), mc4(), mc5(), mc6()

MC2_Methods List of level 2 multiple-concentration correction functions

Description

mc2_mthds returns a list of correction/transformation functions to be used during level 2 multiple-
concentration processing.

Usage

mc2_mthds()

Details

The functions contained in the list returned by mc2_mthds return a list of expressions to be executed
in the mc2 (not exported) function environment. The functions are described here for reference
purposes, The mc2_mthds function is not exported, nor is it intended for use.

All available methods are described in the Available Methods section, listed by the function/method
name.

Value

A list functions

Available Methods

More information about the level 2 multiple-concentration processing is available in the package
vignette, "Data_processing."

Correction Methods:
log2 Transform the corrected response value (cval) to log-scale (base 2).
log10 Transform the corrected response value (cval) to log-scale (base 10).
rmneg Exclude wells with negative corrected response values (cval) and downgrading their well

quality (wllq); if cval < 0, wllq = 0.
rmzero Exclude wells with corrected response values (cval) equal to zero and downgrading their

well quality (wllq); if cval = 0, wllq = 0.

18 MC2_Methods

mult25 Multiply corrected response value (cval) by 25; 25 ∗ cval.
mult100 Multiply corrected response value (cval) by 100; 100 ∗ cval.
negshift Shift corrected response values (cval) by subtracting the minimum cval and adding 1,

such that the new minimum is 1; cval −min+ 1.
mult2.5 Multiply corrected response value (cval) by 2.5; 2.5 ∗ cval.
mult3 Multiply corrected response value (cval) by 3; 3 ∗ cval.
mult6 Multiply corrected response value (cval) by 6; 6 ∗ cval.
sub100 Center data around zero by subtracting the corrected response value (cval) from 100;

100− cval. Typically used if data was pre-normalized around 100 with responses decreasing
to 0.

zscore.npwlls Convert the corrected response value (cval) to an absolute Z-Score based on the
neutral and positive control wells (wllts = n and p), by assay plate ID (apid); cval = |(cval−
mean(cval for wllt = n and p)/sd(cval for wllt = n and p)|.

sub1 Center data around zero by subtracting the corrected response value (cval) from 1; 1−cval.
Typically used if data was pre-normalized around 1 with responses decreasing to 0.

Aggregation Methods:
agg.mean.rep.apid Aggregate technical test replicates (wllt=t) by taking the plate-wise mean per

sample id (spid), assay plate (apid), and concentration index (cndx).
agg.median.rep.apid Aggregate technical test replicates (wllt=t) by taking the plate-wise median

per sample id (spid), assay plate (apid), and concentration index (cndx).
agg.percent.rep.spid Use for binary data. Aggregate technical replicates as percentage by taking

the sum of hits relative to total replicates per sample id (spid) and concentration index (cndx);
cval = (sum(rval)/.N)*100.

agg.percent.rep.spid.min1 Use for binary data. Aggregate technical replicates as percentage by
taking the sum of hits relative to total replicates per per sample id (spid) and concentration
index (cndx), where there is more than one replicate; cval = (sum(rval)/.N)*100, where .N>1.

agg.mean.rep.apid Aggregate technical replicates by taking the plate-wise mean per sample id
(spid), assay plate (apid), and concentration index (cndx).

agg.median.rep.apid Aggregate technical replicates by taking the plate-wise median per sample
id (spid), assay plate (apid), and concentration index (cndx).

agg.percent.rep.spid Use for binary data. Aggregate technical replicates as percentage by taking
the sum of hits relative to total replicates per sample id (spid) and concentration index (cndx);
cval = (sum(rval)/.N) ∗ 100.

agg.percent.rep.spid.min1 Use for binary data. Aggregate technical replicates as percentage
by taking the sum of hits relative to total replicates per per sample id (spid) and concen-
tration index (cndx), where there is more than one replicate; cval = (sum(rval)/.N) ∗
100, where .N > 1.

Note

This function is not exported and is not intended to be used by the user.

See Also

mc2, Method functions to query what methods get applied to each acid

mc3 19

mc3 Perform level 3 multiple-concentration processing

Description

mc3 loads level 2 data from the tcpl database for the given id and performs level 3 multiple-
concentration processing. The processed data is then loaded into the mc3 table and all subsequent
data is deleted with tcplCascade. See details for more information.

The individual processing functions are no longer exported, as it is typically more convenient and
suggested to use the tcplRun wrapper function.

Usage

mc3(ac, wr = FALSE)

Arguments

ac Integer of length 1, assay component id (acid) for processing.

wr Logical, whether the processed data should be written to the tcpl database

Details

Level 3 multiple-concentration processing includes mapping assay component to assay endpoint,
duplicating the data when the assay component has multiple assay endpoints, and any normalization
of the data. Data normalization based on methods listed in mc3_aeid and mc3_methods tables.

Value

A boolean of length 1, indicating the success of the processing, or when ’wr’ is FALSE, a list
where the first element is a boolean indicating the success of processing and the second element is
a data.table containing the processed data

See Also

Method functions, MC3_Methods

Other multiple-concentration: mc1(), mc2(), mc4(), mc5(), mc6()

20 MC3_Methods

MC3_Methods List of level 3 multiple-concentration normalization methods

Description

mc3_mthds returns a list of normalization methods to be used during level 3 multiple-concentration
processing.

Usage

mc3_mthds()

Details

The functions contained in the list returned by mc3_mthds take aeids (a numeric vector of aeid val-
ues) and returns a list of expressions to be executed in the mc3 (not exported) function environment.
The functions are described here for reference purposes, The mc3_mthds function is not exported,
nor is it intended for use.

All available methods are described in the Available Methods section, listed by the type of function
and the function/method name.

Value

A list of functions

Available Methods

The methods are broken into three types, based on what fields they define. Different methods are
used to define "bval" (the baseline value), "pval" (the positive control value), and "resp" (the final
response value).

Although it does not say so specifically in each description, all methods are applied by aeid.

More information about the level 3 multiple-concentration processing is available in the package
vignette, "Data_processing."

bval Methods:

bval.apid.nwlls.med Calculate the baseline value (bval) as the plate-wise median, by assay plate
ID (apid), of the corrected values (cval) for neutral control wells (wllt = n).

bval.apid.lowconc.med Calculate the baseline value (bval) as the plate-wise median, by assay
plate ID (apid), of the corrected values (cval) for test compound wells (wllt = t) with a con-
centration index (cndx) of 1 or 2.

bval.apid.twlls.med Calculate the baseline value (bval) as the plate-wise median, by assay plate
ID (apid), of the corrected values (cval) of test compound wells (wllt = t).

bval.apid.tn.med Calculate the baseline value (bval) as the plate-wise median, by assay plate ID
(apid), of the corrected values (cval) for test compound wells (wllt = t) and neutral control
wells (wllt = n).

MC3_Methods 21

bval.apid.nwllslowconc.med Calculate the baseline value (bval) as the plate-wise median, by
assay plate ID (apid), of the corrected values (cval) of test compound wells (wllt = t) with a
concentration index (cndx) of 1 or 2 or neutral control wells (wllt = n).

bval.spid.lowconc.med Calculate the baseline value (bval) as the sample-wise median, by sam-
ple ID (spid), of the corrected values (cval) of the three lowest concentration test compound
wells (wllt = t and cndx = 1, 2, & 3).

bval.apid.nwllstcwllslowconc.med Calculate the baseline value (bval) as the plate-wise median,
by assay plate ID (apid), of the corrected values (cval) for neutral control wells (wllt = n) or
wells with a concentration index (cndx) of 1 or 2 and well type of test compound (wllt = t) or
gain-of-signal control in multiple concentrations (wllt = c).

bval.aeid.nwlls.med Calculate the baseline value (bval) as the endpoint-wise median, by assay
component endpoint ID (aeid), corrected value (cval) for neutral control wells (wllt = n).

pval Methods:

pval.apid.pwlls.med Calculate the positive control value (pval) as the plate-wise median, by
assay plate ID (apid), of the corrected values (cval) for single-concentration gain-of-signal
positive control wells (wllt = p).

pval.apid.mwlls.med Calculate the positive control value (pval) as the plate-wise median, by
assay plate ID (apid), of the corrected values (cval) for multiple-concentration loss-of-signal
negative control wells (wllt = m).

pval.apid.medpcbyconc.max Calculate the positive control value (pval) as the plate-wise maxi-
mum, by assay plate ID (apid), of the medians of the corrected values (cval) for gain-of-signal
single- or multiple-concentration negative control wells (wllt = m or o) by apid, well type,
and concentration.

pval.apid.medpcbyconc.min Calculate the positive control value (pval) as the plate-wise min-
imum, by assay plate ID (apid), of the medians of corrected value (cval) of gain-of-signal
single- or multiple-concentration positive control wells (wllt = p or c) by apid, well type, and
concentration.

pval.apid.medncbyconc.min Calculate the positive control value (pval) as the plate-wise mini-
mum, by assay plate ID (apid), of the medians of the corrected values (cval) for gain-of-signal
single- or multiple-concentration negative control wells (wllt = m or o) by apid, well type,
and concentration.

pval.apid.pmv.min Calculate the positive control value (pval) as the plate-wise minimum, by
assay plate ID (apid), of the medians of the corrected values (cval) for single-concentration
gain-of-signal, multiple-concentration loss-of-signal, or viability control wells (wllt = p, m,
or v) by apid, well type, and concentration.

pval.apid.pmv.max Calculate the positive control value (pval) as the plate-wise maximum, by
assay plate ID (apid), of the medians of the corrected values (cval) for single-concentration
gain-of-signal, multiple-concentration loss-of-signal, or viability control wells (wllt = p, m,
or v) by apid, well type, and concentration.

pval.apid.f.max Calculate the positive control value (pval) as the plate-wise maximum, by assay
plate ID (apid), of the medians of important reference wells (wllt = f) values by apid and
concentration.

pval.apid.f.min Calculate the positive control value (pval) as the plate-wise minimum, by assay
plate ID (apid), of the medians of important reference wells (wllt = f) values by apid and
concentration.

22 MC3_Methods

pval.apid.p.max Calculate the positive control value (pval) as the plate-wise maximum, by assay
plate ID (apid), of the medians of the corrected values (cval) for single-concentration gain-
of-signal control wells (wllt = p) by apid.

pval.apid.p.min Calculate the positive control value (pval) as the plate-wise minimum, by assay
plate ID (apid), of the medians of corrected values (cval) for single-concentration gain-of-
signal control wells (wllt = p) by apid.

pval.apid.v.min Calculate the positive control value (pval) as the plate-wise minimum, by assay
plate ID (apid), of the medians of the corrected values (cval) for viability control wells (wllt
= v) by apid and concentration.

pval.zero Set the positive control value (pval) to 0; pval = 0.
pval.apid.owlls.med Calculate the positive control value (pval) as the plate-wise median, by

assay plate ID (apid), of the corrected values (cval) for single-concentration negative control
wells (wllt = o).

pval.2bval Calculate the positive control value (pval) as the plate-wise median, by assay plate ID
(apid), of the corrected values (cval) for neutral control wells (wllt = n) multiplied by 2.

pval.maxp Calculate the positive control value (pval) as the endpoint-wise maximum, by assay
component ID (aeid), of the corrected values for single-concentration gain-of-signal wells
(wllt = p).

pval.apid.bwlls.med Calculate the positive control value (pval) as the plate-wise median, by
assay plate ID (apid), of the corrected values (cval) for blank wells (wllt= b).

pval.twlls.99pct Calculate positive control value (pval) as the 99th percentile of all corrected
value (cvals) of the test compound wells (wllt = t).

pval.neg.100 Calculate positive control value (pval) as -100 for endpoints in the down direction;
pval = −100.

resp Methods:
resp.pc Calculate the normalized response (resp) as a percent of control, i.e. the ratio of the

difference between the corrected (cval) and baseline (bval) values divided the difference
between the positive control (pval) and baseline (bval) values multiplied by 100; resp =
(cval − bval)/(pval − bval) ∗ 100.

resp.pc.pval.cor Calculate the normalized response (resp) as a percent of control, i.e. the ratio
of the difference between the corrected (cval) and baseline (bval) values divided the positive
control (pval) value multiplied by 100; resp = (cval − bval)/pval ∗ 100.

resp.fc Calculate the normalized response (resp) as the fold change, i.e. the ratio of the corrected
(cval) and baseline (bval) values; resp = cval/bal.

resp.logfc Calculate the normalized response (resp) as the fold change of logged, i.e. the differ-
ence between corrected (cval) and baseline (bval) log-scale values.

resp.log2 Transform the response values to log-scale (base 2).
resp.mult25 Multiply the normalized response value (resp) by 25; 25 ∗ resp.
resp.scale.mad.log2fc Scale the normalized response value (resp) by the ratio of log2(1.2) and

3 multiplied by the baseline median absolute deviation (bmad) of the unscaled normalized
response values (resp); (log2 1.2)/3 ∗ bmad ∗ resp.

resp.scale.quant.log2fc Scale the normalized response value (resp). First, determine the max-
imum difference (md) by finding the maximum between the absolute difference of the 1st
percentile minus the 50th percentile and the absolute difference of the 99th percentile mi-
nus the 50th percentile. Then multiply resp by log2(1.2) divided by 20 percent of md;
(log2 1.2)/0.2 ∗md ∗ resp.

mc4 23

resp.multneg1 Multiply the normalized response value (resp) by -1; −1 ∗ resp.
resp.shiftneg.3bmad Shift all the normalized response values (resp) less than -3 multiplied by

the baseline median absolute deviation (bmad) to 0; if resp < −3 ∗ bmad, resp = 0.
resp.shiftneg.6bmad Shift all the normalized response values (resp) less than -6 multiplied by

the baseline median absolute deviation (bmad) to 0; if resp < −6 ∗ bmad, resp = 0.
resp.shiftneg.10bmad Shift all the normalized response values (resp) less than 10 multiplied by

the baseline median absolute deviation (bmad) to 0; if resp < −10 ∗ bmad, resp = 0.
resp.blineshift.3bmad.repi Shift the normalized response value (resp) with a baseline correc-

tion, by replicate index (repi), with a window of 3 multiplied by the baseline median absolute
deviation (bmad).

resp.blineshift.50.repi Shift the normalized response value (resp) with a baseline correction, by
replicate index (repi), with a window of 50.

resp.blineshift.3bmad.spid Shift the normalized response value (resp) with a baseline correc-
tion, by sample ID (spid), with a window of 3 multiplied by the baseline median absolute
deviation (bmad).

resp.blineshift.50.spid Shift the normalized response value (resp) with a baseline correction, by
sample ID (spid), with a window of 50.

none Set the corrected response value (cval) as the normalized response value (resp); cval =
resp. No additional mc3 methods needed for endpoint-specific normalization.

resp.zerocenter.fc Calculate the normalized response (resp) as a zero center fold change, i.e.
1 minus the ratio of corrected (cval) and baseline (bval) values; resp = 1 − cval/bval.
Typically used for increasing responses.

resp.incr.zerocenter.fc Calculate the normalized response (resp) as a zero center fold change, i.e.
the ratio of the the corrected (cval) and baseline (bval) values minus 1; resp = cval/bval−1.
Typically used for increasing responses.

resp.mult100 Multiply the normalized response value (resp) by 100; 100 ∗ resp.

Note

This function is not exported and is not intended to be used by the user.

See Also

mc3, Method functions to query what methods get applied to each aeid

mc4 Perform level 4 multiple-concentration processing

Description

mc4 loads level 3 data from the tcpl database for the given id and performs level 4 multiple-
concentration processing. The processed data is then loaded into the mc4 table and all subsequent
data is deleted with tcplCascade. See details for more information.

The individual processing functions are no longer exported, as it is typically more convenient and
suggested to use the tcplRun wrapper function.

24 MC4_Methods

Usage

mc4(ae, wr = FALSE)

Arguments

ae Integer of length 1, assay endpoint id (aeid) for processing.

wr Logical, whether the processed data should be written to the tcpl database

Details

Level 4 multiple-concentration modeling takes the dose-response data for chemical-assay pairs, and
fits three models to the data: constant, hill, and gain-loss. For more information about the models
see Models. When a chemical has more than one sample, the function fits each sample separately.

Value

A boolean of length 1, indicating the success of the processing, or when ’wr’ is FALSE, a list
where the first element is a boolean indicating the success of processing and the second element is
a data.table containing the processed data

See Also

tcplFit, Models

Other multiple-concentration: mc1(), mc2(), mc3(), mc5(), mc6()

MC4_Methods List of level 4 multiple-concentration methods for calculating bmad

Description

mc4_mthds returns a list of methods to be used during level 4 multiple-concentration processing for
calculating bmad

Usage

mc4_mthds()

Details

The functions contained in the list returned by mc4_mthds take aeids (a numeric vector of aeid val-
ues) and returns a list of expressions to be executed in the mc4 (not exported) function environment.
The functions are described here for reference purposes, The mc4_mthds function is not exported,
nor is it intended for use.

All available methods are described in the Available Methods section, listed by the type of function
and the function/method name.

mc5 25

Value

A list of functions

Available Methods

Although it does not say so specifically in each description, all methods are applied by aeid.

More information about the level 4 multiple-concentration processing is available in the package
vignette, "Data_processing."

bmad.aeid.lowconc.twells Calculate the baseline median absolute value (bmad) as the median
absolute deviation of normalized response values (rep) for test compound wells (wllt = t) with
concentration index (cndx) equal to 1 or 2.

bmad.aeid.lowconc.nwells Calculate the baseline median absolute value (bmad) as the median
absolute deviation of normalized response values (resp) for neutral control wells (wllt = n).

onesd.aeid.lowconc.twells Calculate one standard deviation of the normalized response for test
compound wells (wllt = t) with a concentration index (cndx) of 1 or 2; onesd =

√∑
(resp−mean(resp))2/(n− 1).

Used to establish BMR and therefore required for tcplfit2 processing.

bidirectional.false Limits bidirectional fitting and processes data in positive analysis direction
only. Use for gain-of-signal or inverted data.

bmad5.onesd16.static Replace baseline median absolute deviation (bmad) with 5 and one stan-
dard deviation (osd) of the normalized response for test compound wells (wllt = t) with a
concentration index (cndx) of 1 or 2 with 16. Typically used for binary data where values
would otherwise be 0; non-zero values are required for tcplfit2 processing.

Note

This function is not exported and is not intended to be used by the user.

See Also

mc4, Method functions to query what methods get applied to each aeid

mc5 Perform level 5 multiple-concentration processing

Description

mc5 loads level 4 data from the tcpl database for the given id and performs level 5 multiple-
concentration processing. The processed data is then loaded into the mc5 table and all subsequent
data is deleted with tcplCascade. See details for more information.

The individual processing functions are no longer exported, as it is typically more convenient and
suggested to use the tcplRun wrapper function.

26 MC5_Methods

Arguments

ae Integer of length 1, assay endpoint id (aeid) for processing.

wr Logical, whether the processed data should be written to the tcpl database

Details

Level 5 multiple-concentration hit-calling uses the fit parameters and the activity cutoff methods
from mc5_aeid and mc5_methods to make an activity call and identify the winning model for each
fit.

Value

A boolean of length 1, indicating the success of the processing, or when ’wr’ is FALSE, a list
where the first element is a boolean indicating the success of processing and the second element is
a data.table containing the processed data

See Also

Method functions, MC5_Methods

Other multiple-concentration: mc1(), mc2(), mc3(), mc4(), mc6()

MC5_Methods Load list of level 5 multiple-concentration cutoff methods

Description

mc5_mthds returns a list of additional activity cutoff methods to be used during level 5 multiple-
concentration processing.

Usage

mc5_mthds(ae)

Arguments

ae Integer of length 1, the assay endpoint id

Details

The functions contained in the list returned by mc5_mthds take aeids (a numeric vector of aeid val-
ues) and returns a list of expressions to be executed in the mc5 (not exported) function environment.
The functions are described here for reference purposes, The mc5_mthds function is not exported,
nor is it intended for use.

All available methods are described in the "Available Methods" section, listed by the cutoff type in
ascending order of cutoff value.

MC5_Methods 27

Value

A list of functions

Available Methods

The methods are broken down into five categories based on the type of cutoff they assign. Different
methods are used to define cutoffs for "bmad" (baseline median absolute value), "fc" (fold change),
"log" (log2 or log10), "pc" (percent of control), and "other" (uncategorized cutoffs).

All methods are applied by aeid.

Although there are method exceptions (notably within the “other” category), only highest calculated
cutoff value based on assigned methods will be selected for hitcalling. Therefore, only the largest
cutoff method per method type should be assigned.

More information about the level 5 multiple-concentration processing is available in the package
vignette, "Data_processing."

BMAD Methods:
bmad1 Add a cutoff value of 1 multiplied by baseline median absolute value (bmad). By default,

bmad is calculated using test compound wells (wllt = t) for the endpoint.
bmad2 Add a cutoff value of 2 multiplied by the baseline median absolute deviation (bmad). By

default, bmad is calculated using test compound wells (wllt = t) for the endpoint.
bmad3 Add a cutoff value of 3 multiplied by the baseline median absolute deviation (bmad) as

defined at Level 4.
bmad4 Add a cutoff value of 4 multiplied the baseline median absolute deviation (bmad). By

default, bmad is calculated using test compound wells (wllt = t) for the endpoint.
bmad5 Add a cutoff value of 5 multiplied the baseline median absolute deviation (bmad). By

default, bmad is calculated using test compound wells (wllt = t) for the endpoint.
bmad6 Add a cutoff value of 6 multiplied by the baseline median absolute deviation (bmad). By

default, bmad is calculated using test compound wells (wllt = t) for the endpoint.
bmad10 Add a cutoff value of 10 multiplied by the baseline median absolute deviation (bmad).

By default, bmad is calculated using test compound wells (wllt = t) for the endpoint.

Fold Change Methods:
fc0.2 Add a cutoff value of 0.2. Typically for zero centered fold change data.
fc0.3 Add a cutoff value of 0.3. Typically for zero centered fold change data.

Log Methods: Log Base 2

neglog2_0.88 Add a cutoff value of − log2 0.88.
log2_1.2 Add a cutoff value of log2 1.2. Typically for fold change data.
log2_2 Add a cutoff value log2 2. Typically for fold change data.

Log Base 10

log10_1.2 Add a cutoff value of log10 1.2. Typically for fold change data.
log10_2 Add a cutoff value of log10 2. Typically for fold change data.

Percent of Control Methods:
pc05 Add a cutoff value of 5. Typically for percent of control data.

28 mc6

pc10 Add a cutoff value of 10. Typically for percent of control data.
pc20 Add a cutoff value of 20. Typically for percent of control data.
pc25 Add a cutoff value of 25. Typically for percent of control data.
pc30 Add a cutoff value of 30. Typically for percent of control data.
pc50 Add a cutoff value of 50. Typically for percent of control data.
pc70 Add a cutoff value of 70. Typically for percent of control data.
pc95 Add a cutoff value of 95. Typically for percent of control data.

Other Methods:
maxmed20pct Add a cutoff value of 20 percent of the maximum of all endpoint maximal average

response values (max_med).
coff_2.32 Add a cutoff value of 2.32.
loec.coff Method not yet updated for tcpl implementation. Identify the lowest observed effective

concentration (loec) compared to baseline.

Note

This function is not exported and is not intended to be used by the user.

See Also

mc5, Method functions to query what methods get applied to each aeid.

mc6 Perform level 6 multiple-concentration processing

Description

mc6 loads level 5 data from the tcpl database for the given id and performs level 6 multiple-
concentration processing. The processed data is then loaded into the mc6 table and all subsequent
data is deleted with tcplCascade. See details for more information.

The individual processing functions are no longer exported, as it is typically more convenient and
suggested to use the tcplRun wrapper function.

Usage

mc6(ae, wr = FALSE)

Arguments

ae Integer of length 1, assay endpoint id (aeid) for processing.

wr Logical, whether the processed data should be written to the tcpl database

Details

Level 6 multiple-concentration flagging uses both the plate level concentration-response data and
the modeled parameters to flag potential false positives and false negative results.

MC6_Methods 29

Value

A boolean of length 1, indicating the success of the processing, or when ’wr’ is FALSE, a list
where the first element is a boolean indicating the success of processing and the second element is
a data.table containing the processed data

See Also

Method functions, MC6_Methods

Other multiple-concentration: mc1(), mc2(), mc3(), mc4(), mc5()

MC6_Methods Load list of level 6 multiple-concentration flag methods

Description

mc6_mthds returns a list of flag methods to be used during level 6 multiple-concentration process-
ing.

Usage

mc6_mthds()

Value

A list functions

Available Methods

More information about the level 6 multiple-concentration processing is available in the package
vignette, "Data_processing."

modl.directionality.fail Flag series if model directionality is questionable, i.e. if the winning
model direction was opposite, more responses (resp) would have exceeded the cutoff (coff). If
loss was winning directionality (top < 0), flag if count(resp < −1∗coff) < 2∗count(resp >
coff). If gain was winning directionality (top > 0), flag if count(resp > coff) < 2 ∗
count(resp < −1 ∗ coff).

low.nrep Flag series if the average number of replicates per concentration is less than 2; nrep < 2.

low.nconc Flag series if 4 concentrations or less were tested; nconc <= 4.

bmd.high Flag series if modeled benchmark dose (BMD) is greater than AC50 (concentration at
50 percent maximal response). This is indicates high variability in baseline response in excess
of more than half of the maximal response.

singlept.hit.high Flag single-point hit that’s only at the highest conc tested, where series is an
active hit call (hitc >= 0.9) with the median response observed above baseline occurring only
at the highest tested concentration tested.

30 mcdat

singlept.hit.mid Flag single-point hit that’s not at the highest conc tested, where series is an active
hit call (hitc >= 0.9) with the median response observed above baseline occurring only at one
concentration and not the highest concentration tested.

multipoint.neg Flag multi-point miss, where series is an inactive hit call (hitc < 0.9) with multiple
median responses observed above baseline.

gnls.lowconc Flag series where winning model is gain-loss (gnls) and the gain AC50 is less than the
minimum tested concentration, and the loss AC50 is less than the mean tested concentration.

noise Flag series as noisy if the quality of fit as calculated by the root mean square error (rmse) for
the series is greater than the cutoff (coff); rmse > coff .

border Flag series if borderline activity is suspected based on modeled top parameter (top) relative
to cutoff (coff); |top| <= 1.2 ∗ coff or |top| >= 0.8 ∗ coff .

overfit.hit Method not yet updated for tcpl implementation. Flag hit-calls that would get changed
after doing the small N correction to the aic values.

efficacy.50 Flag low efficacy hits if series has an active hit call (hitc >= 0.9) and efficacy values (e.g.
top and maximum median response) less than 50 percent; intended for biochemical assays. If
hitc >= 0.9 and coff >= 5, then flag when top < 50 or maxmed < 50. If hitc >= 0.9
and coff < 5, then flag when top < log2 1.5 or maxmed < log2 1.5.

ac50.lowconc Flag series with an active hit call (hitc >= 0.9) if AC50 (concentration at 50 percent
maximal response) is less than the lowest concentration tested; if hitc >= 0.9 and ac50 <
10logcmin, then flag.

viability.gnls Flag series with an active hit call (hitc >= 0.9) if denoted as cell viability assay with
winning model is gain-loss (gnls); if hitc >= 0.9, modl = "gnls" and cell_viability_assay = 1,
then flag.

no.med.gt.3bmad Flag series where no median response values are greater than baseline as defined
by 3 times the baseline median absolute deviation (bmad); nmed_gtbl = 0, where nmed_gtbl
is the number of medians greater than 3 * bmad.

Note

This function is not exported and is not intended to be used by the user.

See Also

mc6, Method functions to query what methods get applied to each aeid.

mcdat A subset of ToxCast data showing changes in the activity of the intra-
cellular estrogen receptor.

Description

The example dataset is used to illustrate how the user can pipeline multiple-concentration data from
chemical screening using tcplLite.

mc_vignette 31

Usage

mcdat

Format

A data frame with 14183 rows and 10 variables:

spid sample ID

apid assay plate ID

rowi well-plate row number

coli well-plate column number

wllt well type

wllq well quality

conc concentration in micromolar

rval raw assay component readout value

srcf source file containing the data

acsn assay component source name

Source

ToxCast database

mc_vignette List with multi-concentration data for the vignette

Description

This dataset is a list with 6 data.tables (mc0,mc1,mc2,mc3,mc4,mc5).

Usage

mc_vignette

Format

1. mc0 A data frame with 78 rows and 18 columns containing level 0 formatted raw data.

spid Sample ID
chid Unique chemical ID number for tcpl
casn Chemical Abstract Service(CAS) number
chnm Chemical name
dsstox_substance_id Chemical-specific DTXSID
code CAS number compressed into numeric string
acid Assay Component ID

32 mc_vignette

acnm Assay Component Name
m0id Level 0 (mc0) ID
apid Assay plate ID
rowi Row Index
coli Column Index
wllt Well Type
wllq Well Quality (0 or 1)
conc Concentration in micromolar
rval Raw assay component readout value
srcf Source file containing the raw data
conc_unit Concentration Units

2. mc1 A data frame with 78 rows and 21 columns containing level 1 replicate and concentration
level indicated data.

spid Sample ID
chid Unique chemical ID number for tcpl
casn Chemical Abstract Service(CAS) number
chnm Chemical name
dsstox_substance_id Chemical-specific DTXSID
code CAS number compressed into numeric string
acid Assay Component ID
acnm Assay Component Name
m0id Level 0 (mc0) ID
m1id Level 1 (mc1) ID
apid Assay plate ID
rowi Row Index
coli Column Index
wllt Well Type
wllq Well Quality (0 or 1)
conc Concentration in micromolar
rval Raw assay component readout value
cndx Concentration index defined by ranking the unique concentrations, with the lowest con-

centration starting at 1.
repi Temporary replicate ID is defined, the data are scanned from top to bottom and increment

the replicate index every time a replicate ID is duplicated
srcf Source file containing the raw data
conc_unit Concentration Units

3. mc2 A data frame with 78 rows and 20 columns containing level 2 assay component-specific
corrections.

spid Sample ID
chid Unique chemical ID number for tcpl
casn Chemical Abstract Service(CAS) number
chnm Chemical name

mc_vignette 33

dsstox_substance_id Chemical-specific DTXSID
code CAS number compressed into numeric string
acid Assay Component ID
acnm Assay Component Name
m0id Level 0 (mc0) ID
m1id Level 1 (mc1) ID
m2id Level 2 (mc2) ID
apid Assay plate ID
rowi Row Index
coli Column Index
wllt Well Type
conc Concentration in micromolar
cval Corrected Value
cndx Concentration index defined by ranking the unique concentrations, with the lowest con-

centration starting at 1.
repi Temporary replicate ID is defined, the data are scanned from top to bottom and increment

the replicate index every time a replicate ID is duplicated
conc_unit Concentration Units

4. mc3 A data frame with 78 rows and 22 columns containing level 3 assay endpoint normalized
data.

spid Sample ID
chid Unique chemical ID number for tcpl
casn Chemical Abstract Service(CAS) number
chnm Chemical name
dsstox_substance_id Chemical-specific DTXSID
code CAS number compressed into numeric string
aeid Assay Component Endpoint ID
aenm Assay endpoint name (i.e., assay_component_endpoint_name)
m0id Level 0 (mc0) ID
m1id Level 1 (mc1) ID
m2id Level 2 (mc2) ID
m3id Level 3 (mc3) ID
logc Log base 10 concentration
resp Normalized response value
cndx Concentration index defined by ranking the unique concentrations, with the lowest con-

centration starting at 1.
wllt Well Type
apid Assay plate ID
rowi Row Index
coli Column Index
repi Temporary replicate ID is defined, the data are scanned from top to bottom and increment

the replicate index every time a replicate ID is duplicated

34 mc_vignette

resp_unit Response Units
conc_unit Concentration Units

5. mc4 A data frame with 5 rows and 149 columns containing level 4 concentration-response
fitting data (all fits).

spid Sample ID
chid Unique chemical ID number for tcpl
casn Chemical Abstract Service(CAS) number
chnm Chemical name
dsstox_substance_id Chemical-specific DTXSID
code CAS number compressed into numeric string
aeid Assay Component Endpoint ID
aenm Assay endpoint name (i.e., assay_component_endpoint_name)
m4id Level 4 (mc4) ID
bmad The median absolute deviation of all treatment wells (default option) or blank wells
resp_max Maximum observed response
resp_min Minimum observed response
max_mean Maximum mean response
max_mean_conc Concentration of the maximum mean response
max_med Maximum median response
max_med_conc Concentration of the maximum median response
logc_max Maximum concentration on the log scale
logc_min Minimum concentration on the log scale
nconc The total number of concentration groups
npts Total number of observed responses (i.e. data points in the concentration series)
nrep Number of replicates in concentration groups
nmed_gtbl The number of median responses greater than 3BMAD
cnst_success Success indicator for the Constant model; 1 if the optimization was successful,

otherwise 0
cnst_aic Akaike Information Criteria (AIC) for the Constant model
cnst_rme Root mean square error for the Constant model
cnst_er Error term for the Constant model
hill_success Success indicator for the Hill model; 1 if the optimization was successful, oth-

erwise 0
hill_aic Akaike Information Criteria (AIC) for the Hill model
hill_cov Success indicator for the Hill model covariance calculation; 1 if the Hessian matrix

inversion is successful, otherwise 0
hill_rme Root mean square erro for the Hill model
hill_tp The top parameter indicating the maximal estimated response
hill_ga The gain parameter for the Hill model, gain AC50
hill_p The power parameter for the Hill model
hill_er Error term for the Hill model
hill_tp_sd Standard deviation of the Hill model top parameter

mc_vignette 35

hill_ga_sd Standard deviation of the Hill model gain parameter
hill_p_sd Standard deviation of the Hill model power parameter
hill_er_sd Standard deviation of the Hill model error term
hill_top The maximal response on the resulting Hill model fit
hill_ac50 Concentration at 50% of the maximal response on the Hill model fit
gnls_success Success indicator for the Gain-loss model; 1 if the optimization was successful,

otherwise 0
gnls_aic Akaike Information Criteria (AIC) for the Gain-loss model
gnls_cov Success indicator for the Gain-loss model covariance calculation; 1 if the Hessian

matrix inversion is successful, otherwise 0
gnls_rme Root mean square erro for the Gain-loss model
gnls_tp The top parameter indicating the maximal estimated response
gnls_ga The gain parameter for the Gain-loss model, gain AC50
gnls_p The gain power parameter for the Gain-loss model
gnls_la The loss parameter for the Gain-loss model, loss AC50
gnls_q The loss power parameter for the Gain-loss model
gnls_er Error term for the Gain-loss model
gnls_tp_sd Standard deviation of the Gain-loss model top parameter
gnls_ga_sd Standard deviation of the Gain-loss model gain parameter
gnls_p_sd Standard deviation of the Gain-loss model gain power parameter
gnls_la_sd Standard deviation of the Gain-loss model loss parameter
gnls_q_sd Standard deviation of the Gain-loss model loss power parameter
gnls_er_sd Standard deviation of the Gain-loss model error term
gnls_top The maximal response on the resulting Gain-loss model fit
gnls_ac50 Concentration at 50% of the maximal response on the Gain-loss model fit, gain

AC50
gnls_ac50_loss Concentration at 50% of the maximal response on the Gain-loss model fit,

loss AC50
poly1_success Success indicator for the Polynomial 1 model; 1 if the optimization was suc-

cessful, otherwise 0
poly1_aic Akaike Information Criteria (AIC) for the Polynomial 1 model
poly1_cov Success indicator for the Polynomial 1 model covariance calculation; 1 if the Hes-

sian matrix inversion is successful, otherwise 0
poly1_rme Root mean square erro for the Polynomial 1 model
poly1_a The y-scale parameter for the Polynomial 1 model
poly1_er Error term for the Polynomial 1 model
poly1_a_sd Standard deviation of the Polynomial 1 model y-scale parameter
poly1_er_sd Standard deviation of the Polynomial 1 model error term
poly1_top The maximal response on the resulting Polynomial 1 model fit
poly1_ac50 Concentration at 50% of the maximal response on the Polynomial 1 model fit
poly2_success Success indicator for the Polynomial 2 model; 1 if the optimization was suc-

cessful, otherwise 0
poly2_aic Akaike Information Criteria (AIC) for the Polynomial 2 model

36 mc_vignette

poly2_cov Success indicator for the Polynomial 2 model covariance calculation; 1 if the Hes-
sian matrix inversion is successful, otherwise 0

poly2_rme Root mean square erro for the Polynomial 2 model
poly2_a The y-scale parameter for the Polynomial 2 model
poly2_b The x-scale parameter for the Polynomial 2 model
poly2_er Error term for the Polynomial 2 model
poly2_a_sd Standard deviation of the Polynomial 2 model y-scale parameter
poly2_b_sd Standard deviation of the Polynomial 2 model x-scale parameter
poly2_er_sd Standard deviation of the Polynomial 2 model error term
poly2_top The maximal response on the resulting Polynomial 2 model fit
poly2_ac50 Concentration at 50% of the maximal response on the Polynomial 2 model fit
pow_success Success indicator for the Power model; 1 if the optimization was successful,

otherwise 0
pow_aic Akaike Information Criteria (AIC) for the Power model
pow_cov Success indicator for the Power model covariance calculation; 1 if the Hessian ma-

trix inversion is successful, otherwise 0
pow_rme Root mean square erro for the Power model
pow_a The y-scale parameter for the Power model
pow_p The power parameter for the Power model
pow_er Error term for the Power model
pow_a_sd Standard deviation of the Power model y-scale parameter
pow_p_sd Standard deviation of the Power model power parameter
pow_er_sd Standard deviation of the Power model error term
pow_top The maximal response on the resulting Power model fit
pow_ac50 Concentration at 50% of the maximal response on the Power model fit
exp2_success Success indicator for the Exponential 2 model; 1 if the optimization was suc-

cessful, otherwise 0
exp2_aic Akaike Information Criteria (AIC) for the Exponential 2 model
exp2_cov Success indicator for the Exponential 2 model covariance calculation; 1 if the Hes-

sian matrix inversion is successful, otherwise 0
exp2_rme Root mean square erro for the Exponential 2 model
exp2_a The y-scale parameter for the Exponential 2 model
exp2_b The x-scale parameter for the Exponential 2 model
exp2_er Error term for the Exponential 2 model
exp2_a_sd Standard deviation of the Exponential 2 model y-scale parameter
exp2_b_sd Standard deviation of the Exponential 2 model x-scale parameter
exp2_er_sd Standard deviation of the Exponential 2 model error term
exp2_top The maximal response on the resulting Exponential 2 model fit
exp2_ac50 Concentration at 50% of the maximal response on the Exponential 2 model fit
exp3_success Success indicator for the Exponential 3 model; 1 if the optimization was suc-

cessful, otherwise 0
exp3_aic Akaike Information Criteria (AIC) for the Exponential 3 model

mc_vignette 37

exp3_cov Success indicator for the Exponential 3 model covariance calculation; 1 if the Hes-
sian matrix inversion is successful, otherwise 0

exp3_rme Root mean square erro for the Exponential 3 model
exp3_a The y-scale parameter for the Exponential 3 model
exp3_b The x-scale parameter for the Exponential 3 model
exp3_p The power parameter for the Exponential 3 model
exp3_er Error term for the Exponential 3 model
exp3_a_sd Standard deviation of the Exponential 3 model y-scale parameter
exp3_b_sd Standard deviation of the Exponential 3 model x-scale parameter
exp3_p_sd Standard deviation of the Exponential 3 model power parameter
exp3_er_sd Standard deviation of the Exponential 3 model error term
exp3_top The maximal response on the resulting Exponential 3 model fit
exp3_ac50 Concentration at 50% of the maximal response on the Exponential 3 model fit
exp4_success Success indicator for the Exponential 4 model; 1 if the optimization was suc-

cessful, otherwise 0
exp4_aic Akaike Information Criteria (AIC) for the Exponential 4 model
exp4_cov Success indicator for the Exponential 4 model covariance calculation; 1 if the Hes-

sian matrix inversion is successful, otherwise 0
exp4_rme Root mean square erro for the Exponential 4 model
exp4_tp The top parameter indicating the maximal estimated response
exp4_ga The gain parameter for the Exponential 4 model, gain AC50
exp4_er Error term for the Exponential 4 model
exp4_tp_sd Standard deviation of the Exponential 4 model top parameter
exp4_ga_sd Standard deviation of the Exponential 4 model gain parameter
exp4_er_sd Standard deviation of the Exponential 4 model error term
exp4_top The maximal response on the resulting Exponential 4 model fit
exp4_ac50 Concentration at 50% of the maximal response on the Exponential 4 model fit
exp5_success Success indicator for the Exponential 5 model; 1 if the optimization was suc-

cessful, otherwise 0
exp5_aic Akaike Information Criteria (AIC) for the Exponential 5 model
exp5_cov Success indicator for the Exponential 5 model covariance calculation; 1 if the Hes-

sian matrix inversion is successful, otherwise 0
exp5_rme Root mean square erro for the Exponential 5 model
exp5_tp The top parameter indicating the maximal estimated response
exp5_ga The gain parameter for the Exponential 5 model, gain AC50
exp5_p The power parameter for the Exponential 5 model
exp5_er Error term for the Exponential 5 model
exp5_tp_sd Standard deviation of the Exponential 5 model top parameter
exp5_ga_sd Standard deviation of the Exponential 5 model gain parameter
exp5_p_sd Standard deviation of the Exponential 5 model power parameter
exp5_er_sd Standard deviation of the Exponential 5 model error term
exp5_top The maximal response on the resulting Exponential 5 model fit
exp5_ac50 Concentration at 50% of the maximal response on the Exponential 5 model fit

38 mc_vignette

all_onesd Standard deviation of the baseline response for all models
all_bmed Median noise estimation of the baseline response for all models
resp_unit Response Units
conc_unit Concentration Units

6. mc5 A data frame with 5 rows and 54 columns containing level 5 best curve-fit and hitcall
data.

spid Sample ID
chid Unique chemical ID number for tcpl
casn Chemical Abstract Service(CAS) number
chnm Chemical name
dsstox_substance_id Chemical-specific DTXSID
code CAS number compressed into numeric string
aeid Assay Component Endpoint ID
aenm Assay endpoint name (i.e., assay_component_endpoint_name)
m5id Level 5 (mc5) ID
m4id Level 4 (mc4) ID
bmad The median absolute deviation of all treatment wells (default option) or blank wells
resp_max Maximum observed response
resp_min Minimum observed response
max_mean Maximum mean response
max_mean_conc Concentration of the maximum mean response
max_med Maximum median response
max_med_conc Concentration of the maximum median response
logc_max Maximum concentration on the log scale
logc_min Minimum concentration on the log scale
nconc The total number of concentration groups
npts Total number of observed responses (i.e. data points in the concentration series)
nrep Number of replicates in concentration groups
nmed_gtbl The number of median responses greater than 3BMAD
hitc Hitcall
modl Best model fit from tcplFit2 curve-fitting
fitc Fit category
coff Cutoff
top_over_cutoff Ratio of the top of the best model fit curve and the cutoff
rmse Root mean squared error
a The y-scale parameter for poly1, poly2, pow, exp2, or exp3 model
er Error term
bmr Benchmark response
bmdl Lower 95% confidence bound on the benchmark dose/concentration estimate
caikwt Akaike Information Criteria weight of constant model relative to the best model fit
mll Maximum log-likelihood of the best model fit
hitcall Continuous hitcall

Method functions 39

ac50 Concentration where 50% of the maximal response occurs - if ’modl’ is the Hill or
Gain-loss model this is for the "gain" side of the response

top The maximal response on the best model curve fit - i.e. top of the curve fit
ac5 Concentration where 5% of the maximal response occurs
ac10 Concentration where 10% of the maximal response occurs
ac20 Concentration where 20% of the maximal response occurs
acc Concentration where the efficacy cutoff response occurs
ac1sd Concentration where one standard deviation of the background response occurs
bmd Benchmark response/concentration estimate - concentration where the benchmark re-

sponse occurs
bmdu Upper 95% confidence bound on the benchmark dose/concentration estimate
tp The top curve parameter for the exp4, exp5, hill, or gnls model
ga The gain parameter for the hill or gnls model - gain AC50
p The power parameter for the pow, exp3, exp5, gnls, or hill model - for gnls this is the gain

power parameter
q The loss power parameter for the gnls model
la The loss parameter for the gnls model, loss AC50
ac50_loss Concentration where 50% of the maximal response occurs - if ’modl’ is the Hill or

Gain-loss model this is for the "loss" side of the response
b The x-scale parameter for poly2, exp2, or exp3 model
resp_unit Response Units
conc_unit Concentration Units

Method functions Functions for managing processing methods

Description

These functions are used to manage which methods are used to process data. They include methods
for assigning, clearing, and loading the assigned methods. Also, tcplMthdList lists the available
methods.

Usage

tcplMthdAssign(lvl, id, mthd_id, ordr = NULL, type)

tcplMthdClear(lvl, id, mthd_id = NULL, type)

tcplMthdList(lvl, type = "mc")

tcplMthdLoad(lvl, id = NULL, type = "mc")

40 Method functions

Arguments

lvl Integer of length 1, the method level

id Integer, the assay component or assay endpoint id(s)

mthd_id Integer, the method id(s)

ordr Integer, the order in which to execute the analysis methods, must be the same
length as mthd_id, does not apply to levels 5 or 6

type Character of length 1, the data type, "sc" or "mc"

Details

tcplMthdLoad loads the assigned methods for the given level and ID(s). Similarly, tcplMthdList
displays the available methods for the given level. These two functions do not make any changes to
the database.

Unlike the -Load and -List functions, the -Assign and -Clear functions alter the database and
trigger a delete cascade. tcplMthdAssign assigns methods to the given ID(s), and tcplMthdClear
removes methods. In addition to the method ID (’mthd_id’), assigning methods at some levels
require an order (’ordr’). The ’ordr’ parameter is necessary to allow progression of methods at
level one for single-concentration processing, and levels two and three for multiple-concentration
processing. More information about method assignments and the delete cascade are available in the
package vignette.

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfDefault()

tcplListMthd allows the user to display the available methods for
a given level and data type
head(tcplMthdList(lvl = 2, type = "mc"))

tcplLoadMthd shows which methods are assigned for the given ID, level,
and data type. Here we will show how to register, load, and clear methods
using an acid not in the example database. Note: There is no check for
whether an ID exists before assigning/clearing methods.
tcplMthdLoad(lvl = 2, id = 55, type = "mc")

Not run:
ACID 55 does not have any methods. Assign methods from the list above.
tcplMthdAssign(lvl = 2,

id = 55,
mthd_id = c(3, 4, 2),
ordr = 1:3,
type = "mc")

Method assignment can be done for multiple assays, too.
tcplMthdAssign(lvl = 2,

id = 53:54,
mthd_id = c(3, 4, 2),

Models 41

ordr = 1:3,
type = "mc")

Cleanup example method assigments
tcplMthdClear(lvl = 2, id = 53:55, type = "mc")

End(Not run)
Reset configuration
options(conf_store)

Models Model objective functions

Description

These functions take in the dose-response data and the model parameters, and return a likelihood
value. They are intended to be optimized using constrOptim in the tcplFit function.

Usage

tcplObjCnst(p, resp)

tcplObjGnls(p, lconc, resp)

tcplObjHill(p, lconc, resp)

tcplObjCnst(p, resp)

tcplObjGnls(p, lconc, resp)

tcplObjHill(p, lconc, resp)

Arguments

p Numeric, the parameter values. See details for more information.

resp Numeric, the response values

lconc Numeric, the log10 concentration values

Details

These functions produce an estimated value based on the model and given parameters for each
observation. Those estimated values are then used with the observed values and a scale term to
calculate the log-likelihood.

Let t(z, ν) be the Student’s t-distribution with ν degrees of freedom, yi be the observed response at
the ith observation, and µi be the estimated response at the ith observation. We calculate zi as:

zi =
yi − µi
eσ

42 Models

where σ is the scale term. Then the log-likelihood is:

n∑
i=1

[ln(t(zi, 4))− σ]

Where n is the number of observations.

Value

The log-likelihood.

Constant Model (cnst)

tcplObjCnst calculates the likelyhood for a constant model at 0. The only parameter passed to
tcplObjCnst by p is the scale term σ. The constant model value µi for the ith observation is given
by:

µi = 0

tcplObjCnst calculates the likelyhood for a constant model at 0. The only parameter passed to
tcplObjCnst by p is the scale term σ. The constant model value µi for the ith observation is given
by:

µi = 0

Gain-Loss Model (gnls)

tcplObjGnls calculates the likelyhood for a 5 parameter model as the product of two Hill models
with the same top and both bottoms equal to 0. The parameters passed to tcplObjGnls by p are (in
order) top (tp), gain log AC50 (ga), gain hill coefficient (gw), loss log AC50 la , loss hill coefficient
lw , and the scale term (σ). The gain-loss model value µi for the ith observation is given by:

gi =
1

1 + 10(ga−xi)gw

li =
1

1 + 10(xi−la)lw

µi = tp(gi)(li)

where xi is the log concentration for the ith observation.

tcplObjGnls calculates the likelyhood for a 5 parameter model as the product of two Hill models
with the same top and both bottoms equal to 0. The parameters passed to tcplObjGnls by p are (in
order) top (tp), gain log AC50 (ga), gain hill coefficient (gw), loss log AC50 la , loss hill coefficient
lw , and the scale term (σ). The gain-loss model value µi for the ith observation is given by:

gi =
1

1 + 10(ga−xi)gw

li =
1

1 + 10(xi−la)lw

µi = tp(gi)(li)

where xi is the log concentration for the ith observation.

Query functions 43

Hill Model (hill)

tcplObjHill calculates the likelyhood for a 3 parameter Hill model with the bottom equal to 0.
The parameters passed to tcplObjHill by p are (in order) top (tp), log AC50 (ga), hill coefficient
(gw), and the scale term (σ). The hill model value µi for the ith observation is given by:

µi =
tp

1 + 10(ga−xi)gw

where xi is the log concentration for the ith observation.
tcplObjHill calculates the likelyhood for a 3 parameter Hill model with the bottom equal to 0.
The parameters passed to tcplObjHill by p are (in order) top (tp), log AC50 (ga), hill coefficient
(gw), and the scale term (σ). The hill model value µi for the ith observation is given by:

µi =
tp

1 + 10(ga−xi)gw

where xi is the log concentration for the ith observation.

Query functions Wrappers for sending queries and fetching results

Description

These functions send a query to the given database, and are the access point for all tcpl functions
that query or update the tcpl database.

Usage

tcplQuery(
query,
db = getOption("TCPL_DB"),
drvr = getOption("TCPL_DRVR"),
tbl = NULL

)

tcplSendQuery(
query,
db = getOption("TCPL_DB"),
drvr = getOption("TCPL_DRVR"),
tbl = NULL,
delete = F

)

Arguments

query Character of length 1, the query string
db Character of length 1, the name of the tcpl database
drvr Character of length 1, which database driver to use
tbl Tables to be read queried
delete Logical of length 1, execute delete on queried table

44 Register/update annotation

Details

Currently, the tcpl package only supports the "MySQL" and "tcplLite" database drivers.

tcplQuery returns a data.table object with the query results. tcplSendQuery sends a query, but
does not fetch any results, and returns ’TRUE’ or the error message given by the database.

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
TCPLlite <- file.path(system.file(package = "tcpl"), "example")
tcplConf(db = TCPLlite, user = NA, host = NA, drvr = "tcplLite")

tcplQuery("SELECT 'Hello World';")

When using tcplLite, name of table must be passed into tcplQuery
if (conf_store$TCPL_DRVR == 'MySQL') {

tcplQuery("SELECT * FROM assay;")
} else {

tcplQuery("SELECT * FROM assay;", tbl='assay')
}

Reset configuration
options(conf_store)

Register/update annotation

Functions for registering & updating annotation information

Description

These functions are used to register and update the chemical and assay annotation information.

Usage

tcplRegister(what, flds)

tcplUpdate(what, id, flds)

Arguments

what Character of length 1, the name of the ID to register or update

flds Named list, the other fields and their values

id Integer, the ID value(s) to update

Register/update annotation 45

Details

These functions are used to populate the tcpl database with the necessary annotation information to
complete the processing. As shown in the package vignette, the package requires some information
about the samples and assays before data can be loaded into the tcpl database.

Depending on what is being registered, different information is required. The following table lists
the fields that can be registered/updated by these functions, and the minimal fields required for
registering a new ID. (The database table affected is in parentheses.)

• asid (assay_source): assay_source_name

• aid (assay): asid, assay_name, assay_footprint

• acid (assay_component): aid, assay_component_name

• aeid (assay_component_endpoint): acid, assay_component_endpoint_name, normalized_data_type

• acsn (assay_component_map): acid, acsn

• spid (sample): spid, chid

• chid (chemical): chid, casn

• clib (chemical_library): chid, clib

Note: The functions accept the abbreviated forms of the names, ie. "aenm" rather than the full
"assay_component_endpoint_name." More information about the registration process and all of the
fields is available in the vignette.

Examples

Not run:
Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfDefault()

Load current ASID information
tcplLoadAsid()

Register a new assay source
tcplRegister(what = "asid", flds = list(asnm = "example_asid"))

Show the newly registered ASID
tcplLoadAsid(add.fld = "assay_source_desc")

Notice that the newly created ASID does not have an assay_source_desc.
The field could have been defined during the registration process, but
can also be updated using tcplUpdate
i1 <- tcplLoadAsid()[asnm == "example_asid", asid]
tcplUpdate(what = "asid",

id = i1,
flds = list(assay_source_desc = "example asid description"))

tcplLoadAsid(add.fld = "assay_source_desc")

46 registerMthd

Remove the created ASID. Note: Manually deleting primary keys can cause
serious database problems and should not generally be done.

If using the tcplLite DRVR, must specify table name
if (conf_store$TCPL_DRVR == 'MySQL') {

tcplSendQuery(paste0("DELETE FROM assay_source WHERE asid = ", i1, ";"))
} else {

qy <- paste0("SELECT * FROM assay_source WHERE NOT asid = ", i1, ";")
tcplSendQuery(qy, tbl='assay_source', delete=TRUE)

}

Reset configuration
options(conf_store)

End(Not run)

registerMthd Add a new analysis method

Description

registerMthd registers a new analysis method to the tcpl databases.

Usage

registerMthd(lvl, mthd, desc, nddr = 0L, type)

Arguments

lvl Integer of length 1, the level for the analysis method

mthd Character, the name of the method

desc Character, same length as mthd, the method description

nddr Integer, 0 or 1, 1 if the method requires loading the dose- response data

type Character of length 1, the data type, "sc" or "mc"

Details

’mthd’ must match a corresponding function name in the functions that load the methods, ie.
mc2_mthds. ’nddr’ only applies to level 6 methods.

sc1 47

sc1 Perform level 1 single-concentration processing

Description

sc1 loads level 0 data from the tcpl database for the given id and performs level 1 single-concentration
processing. The processed data is then loaded into the sc1 table and all subsequent data is deleted
with tcplCascade. See details for more information.

The individual processing functions are no longer exported, as it is typically more convenient and
suggested to use the tcplRun wrapper function.

Usage

sc1(ac, wr = FALSE)

Arguments

ac Integer of length 1, assay component id (acid) for processing.

wr Logical, whether the processed data should be written to the tcpl database

Details

Level 1 single-concentration processing includes mapping assay component to assay endpoint, du-
plicating the data when the assay component has multiple assay endpoints, and any normalization
of the data. Data normalization based on methods listed in sc1_aeid and sc1_methods tables.

Value

A boolean of length 1, indicating the success of the processing, or when ’wr’ is FALSE, a list
where the first element is a boolean indicating the success of processing and the second element is
a data.table containing the processed data

See Also

Method functions, SC1_Methods

Other single-concentration: sc2()

48 SC1_Methods

SC1_Methods List of level 1 single-concentration normalization functions

Description

sc1_mthds returns a list of functions to be used during level 1 single-concentration processing.

Usage

sc1_mthds()

Details

The functions contained in the list returned by sc1_mthds return a list of expressions to be executed
in the sc2 (not exported) function environment. The functions are described here for reference
purposes, The sc1_mthds function is not exported, nor is it intended for use.

All available methods are described in the Available Methods section, listed by the function/method
name.

Value

A list functions

Available Methods

The methods are broken into three types, based on what fields they define. Different methods are
used to define "bval" (the baseline value), "pval" (the positive control value), and "resp" (the final
response value).

Although it does not say so specifically in each description, all methods are applied by acid.

More information about the level 3 single-concentration processing is available in the package vi-
gnette, "Data_processing."

bval Methods:

bval.apid.nwlls.med Calculate the baseline value (bval) as the plate-wise median, by assay plate
ID (apid), of the raw values (rval) for neutral control wells (wllt = n).

bval.apid.twlls.med Calculate the baseline value (bval) as the plate-wise median, by assay plate
ID (apid), of the raw values (rval) for test compound wells (wllt = t).

bval.apid.tn.med Calculate the baseline value (bval) as the plate-wise median, by assay plate ID
(apid), of the raw values (rval) for test compound wells (wllt = t) and neutral control wells
(wllt = n).

pval Methods:

pval.apid.pwlls.med Calculate the positive control value (pval) as the plate-wise median, by
assay plate ID (apid), of the raw values (rval) for single-concentration gain-of-signal positive
control wells (wllt = p).

SC1_Methods 49

pval.apid.mwlls.med Calculate the positive control value (pval) as the plate-wise median, by as-
say plate ID (apid), of the raw values (rval) for multiple-concentration loss-of-signal negative
control wells (wllt = m).

pval.apid.medpcbyconc.max Calculate the positive control value (pval) as the plate-wise max-
imum, by assay plate ID (apid), of the medians of the raw values (rval) for gain-of-signal
single- or multiple-concentration positive control wells (wllt = p or c) by apid, well type, and
concentration.

pval.apid.medpcbyconc.min Calculate the positive control value (pval) as the plate-wise min-
imum, by assay plate ID (apid), of the medians of the raw values (rval) for gain-of-signal
single- or multiple-concentration positive control wells (wllt = p or c) by apid, well type, and
concentration.

pval.apid.medncbyconc.min Calculate the positive control value (pval) as the plate-wise min-
imum, by assay plate ID (apid), of the medians of the raw values (rval) for gain-of-signal
single- or multiple-concentration negative control wells (wllt = m or o) by apid, well type,
and concentration.

pval.zero Set the positive control value (pval) to 0; pval = 0.
pval.apid.or.aeid.pwlls.med Calculate the positive control value (pval) as the plate-wise median,

by assay plate ID (apid), of the raw values (rval) for single-concentration gain-of-signal pos-
itive control wells (wllt = p). For plates without p wells, set the pval as the median pval
calculated from all plates.

resp Methods:

resp.pc Calculate the normalized response (resp) as a percent of control, i.e. the ratio of the
difference between the raw (rval) and baseline (bval) values divided by the difference be-
tween positive control (pval) and baseline (bval) values multiplied by 100; resp = (rval −
bval)/(pval − bval) ∗ 100.

resp.fc Calculate the normalized response (resp) as fold change, i.e. the ratio of the raw (rval)
and baseline (bval) values; resp = rval/bval.

resp.logfc Calculate the normalized response (resp) as the fold change of logged, i.e. the differ-
ence between raw (rval) and baseline (bval) log-scale values.

resp.log2 Transform the response values to log-scale (base 2).
resp.multneg1 Multiply the normalized response value (resp) by -1; −1 ∗ resp.
none Use raw value (rval) as is. This may be necessary for additional endpoint-specific adjust-

ments, or where no additional sc1 methods are needed.
resp.incr.zerocenter.fc Calculate the normalized response (resp) as a zero center fold change,

i.e. the ratio of the raw (rval) and baseline (bval) values minus 1; resp = rval/bval − 1.
Typically used for increasing responses.

Note

This function is not exported and is not intended to be used by the user.

See Also

sc1, Method functions to query what methods get applied to each acid

50 sc2

sc2 Perform level 2 single-concentration processing

Description

sc2 loads level 1 data from the tcpl database for the given id and performs level 2 single-concentration
processing. The processed data is then loaded into the sc2 table and all subsequent data is deleted
with tcplCascade. See details for more information.

The individual processing functions are no longer exported, as it is typically more convenient and
suggested to use the tcplRun wrapper function.

Usage

sc2(ae, wr = FALSE)

Arguments

ae Integer of length 1, assay endpoint id (aeid) for processing.

wr Logical, whether the processed data should be written to the tcpl database

Details

Level 2 single-concentration processing defines the bmad value, and uses the activity cutoff methods
from sc2_aeid and sc2_methods to make an activity call.

Value

A boolean of length 1, indicating the success of the processing, or when ’wr’ is FALSE, a list
where the first element is a boolean indicating the success of processing and the second element is
a data.table containing the processed data

See Also

Method functions, SC2_Methods

Other single-concentration: sc1()

SC2_Methods 51

SC2_Methods List of level 2 single-concentration hit-call functions

Description

sc2_mthds returns a list of functions to be used during level 2 single-concentration processing.

Usage

sc2_mthds()

Details

The functions contained in the list returned by sc2_mthds return a list of expressions to be executed
in the sc2 (not exported) function environment. The functions are described here for reference
purposes, The sc2_mthds function is not exported, nor is it intended for use.

All available methods are described in the Available Methods section, listed by the function/method
name.

Value

A list functions

Available Methods

The methods are broken down into four categories based on the type of cutoff they assign. Different
methods are used to define cutoffs for "bmad" (baseline median absolute value), "pc" (percent of
control), "pc or bmad", "log" (log2 or log10), and "other" (uncategorized methods).

All methods are applied by aeid.

Although there are method exceptions (notably within the “other” category), only highest calculated
cutoff value based on assigned methods will be selected for hitcalling. Therefore, only the largest
cutoff method per method type should be assigned.

More information about the level 2 single-concentration processing is available in the package vi-
gnette, "Data_processing."

BMAD Methods:
bmad1 Add a cutoff value of 1 multiplied by baseline median absolute deviation (bmad). By

default, bmad is calculated using test compound wells (wllt = t) for the endpoint.
bmad1.5 Add a cutoff value of 1.5 multiplied by the baseline median absolute deviation (bmad).

By default, bmad is calculated using test compound wells (wllt = t) for the endpoint.
bmad2 Add a cutoff value of 2 multiplied by the baseline median absolute deviation (bmad). By

default, bmad is calculated using test compound wells (wllt = t) for the endpoint.
bmad3 Add a cutoff value of 3 multiplied by the baseline median absolute deviation (bmad). By

default, bmad is calculated using test compound wells (wllt = t) for the endpoint.
bmad5 Add a cutoff value of 5 multiplied the baseline median absolute deviation (bmad). By

default, bmad is calculated using test compound wells (wllt = t) for the endpoint.

52 SC2_Methods

bmad6 Add a cutoff value of 6 multiplied by the baseline median absolute deviation (bmad). By
default, bmad is calculated using test compound wells (wllt = t) for the endpoint.

bmad10 Add a cutoff value of 10 multiplied by the baseline median absolute deviation (bmad).
By default, bmad is calculated using test compound wells (wllt = t) for the endpoint.

Percent of Control Methods:

pc0.88 Add a cutoff value of 0.88. Typically for percent of control data.

pc20 Add a cutoff value of 20. Typically for percent of control data.

pc25 Add a cutoff value of 25. Typically for percent of control data.

pc30 Add a cutoff value of 30. Typically for percent of control data.

Percent of Control or BMAD Methods:

pc30orbmad3 Add a cutoff value of either 30 or 3 multiplied by the baseline median absolute
deviation (bmad), whichever is less. By default, bmad is calculated using test compound
wells (wllt = t) for the endpoint.

Log Methods: Log Base 2

log2_0.76 Add a cutoff value of 0.76 for log2-transformed data. This was a custom threshold
value set for endpoint id 1690 (formerly aeid 1691).

log2_1.2 Add a cutoff value of log21.2. Typically for fold change data.

log2_1.5 Add a cutoff value of log21.5. Typically for fold change data.

Log Base 10

log10_1.2 Add a cutoff value of log101.2. Typically for fold change data.

Other Methods:

ow_bmad_nwells Overwrite the default baseline median absolute value (bmad) with a bmad
calculated using neutral control wells (wllt = n).

ow_bidirectional_false Overwrite the max_med and max_tmp values, which were calculated
using absolute value, to a calculation not using absolute value for non-bidirectional data.

Note

This function is not exported and is not intended to be used by the user.

See Also

sc2, Method functions to query what methods get applied to each acid

scdat 53

scdat A subset of ToxCast data showing changes in transcription factor ac-
tivity for multiple targets.

Description

The example dataset is used to illustrate how the user can pipeline single-concentration data from
chemical screening using tcplLite.

Usage

scdat

Format

A data frame with 320 rows and 10 variables:

spid sample ID

apid assay plate ID

rowi well-plate row number (N/A)

coli well-plate column number (N/A)

wllt well type (N/A)

wllq well quality (N/A)

conc concentration in micromolar

rval raw assay component readout value

srcf source file containing the data

acsn assay component source name

Source

ToxCast database

sc_vignette List with single-concentration data for the vignette

Description

This dataset is a list with 3 data.tables (sc0,sc1,sc2).

Usage

sc_vignette

54 sc_vignette

Format

1. sc0 A data frame with 10 rows and 18 columns containing level 0 formatted raw data.

spid Sample ID
chid Unique chemical ID number for tcpl
casn Chemical Abstract Service(CAS) number
chnm Chemical name
dsstox_substance_id Chemical-specific DTXSID
code CAS number compressed into numeric string
acid Assay Component ID
acnm Assay Component Name
s0id Level 0 (sc0) ID
apid Assay plate ID
rowi Row Index
coli Column Index
wllt Well Type
wllq Well Quality (0 or 1)
conc Concentration in micromolar
rval Raw assay component readout value
srcf Source file containing the raw data
conc_unit Concentration Units

2. sc1 A data frame with 10 rows and 20 columns containing level 1 normalized data.

spid Sample ID
chid Unique chemical ID number for tcpl
casn Chemical Abstract Service(CAS) number
chnm Chemical name
dsstox_substance_id Chemical-specific DTXSID
code CAS number compressed into numeric string
aeid Assay Component Endpoint ID
aenm Assay endpoint name (i.e., assay_component_endpoint_name)
acid Assay Component ID
acnm Assay Component Name
s0id Level 0 (sc0) ID
s1id Level 1 (sc1) ID
apid Assay plate ID
rowi Row Index
coli Column Index
wllt Well Type
logc Log base 10 concentration
resp Normalized response value
resp_unit Response Units
conc_unit Concentration Units

sink.reset 55

3. sc2 A data frame with 10 rows and 15 columns containing level 2 efficacy/hit designation data.

spid Sample ID
chid Unique chemical ID number for tcpl
casn Chemical Abstract Service(CAS) number
chnm Chemical name
dsstox_substance_id Chemical-specific DTXSID
code CAS number compressed into numeric string
aeid Assay Component Endpoint ID
aenm Assay endpoint name (i.e., assay_component_endpoint_name)
s2id Level 2 (sc2) ID
bmad The median absolute deviation of all treatment wells (default option) or blank wells
max_med Maximum median response
hitc Hitcall
coff Cutoff
resp_unit Response Units
conc_unit Concentration Units

sink.reset Reset all sinks

Description

sink.reset resets all sinks and returns all output to the console.

Usage

sink.reset()

Details

sink.reset identifies all sinks with sink.number then returns all output and messages back to the
console.

See Also

sink, sink.number

Other tcpl abbreviations: is.odd(), lu(), lw()

56 tcplAddModel

tcplAddModel Draw a tcpl Model onto an existing plot

Description

tcplAddModel draws a a line for one of the tcpl Models (see Models for more information) onto an
existing plot.

Usage

tcplAddModel(pars, modl = NULL, adj = NULL, ...)

Arguments

pars List of parameters from level 4 or 5 output

modl Character of length 1, the model to plot: ’cnst,’ ’hill,’ or ’gnls’

adj Numeric of length 1, an adjustment factor, see details for more information

... Additional arguments passed to curve

Details

tcplAddModel draws the model line assuming the x-axis represents log base 10 concentration.

If modl is NULL, the function checks pars$modl and will return an error if pars$modl is also
NULL.

adj is intended to scale the models, so that models with different response units can be visualized
on a single plot. The recommended value for adl is 1/(3*bmad) for level 4 data and 1/coff for
level 5 data. If adj is NULL the function will check pars$adj and set adj to 1 if pars$adj is also
NULL.

See Also

Models, tcplPlotFits

Examples

Create some dummy data to plot
logc <- 1:10
r1 <- sapply(logc, tcplHillVal, ga = 5, tp = 50, gw = 0.5)
r2 <- log2(sapply(logc, tcplHillVal, ga = 4, tp = 30, gw = 0.5))
p1 <- tcplFit(logc = logc, resp = r1, bmad = 10)
p2 <- tcplFit(logc = logc, resp = r2, bmad = log2(1.5))

In the dummy data above, the two plots are on very different scales
plot(r1 ~ logc, pch = 16, ylab = "raw response")
tcplAddModel(pars = p1, modl = "hill")
points(r2 ~ logc)
tcplAddModel(pars = p2, modl = "hill", lty = "dashed")

tcplAICProb 57

To visualize the two curves on the same plot for comparison, we can
scale the values to the bmad, such that a scaled response of 1 will equal
the bmad for each curve.
plot(r1/10 ~ logc, pch = 16, ylab = "scaled response")
tcplAddModel(pars = p1, modl = "hill", adj = 1/10)
points(r2/log2(5) ~ logc)
tcplAddModel(pars = p2, modl = "hill", adj = 1/log2(5), lty = "dashed")

tcplAICProb Calculate the AIC probabilities

Description

tcplAICProb Calculates the probability that the model best represents the data based on the AIC
value for each model.

Usage

tcplAICProb(...)

Arguments

... Numeric vectors of AIC values

Details

The function takes vectors of AIC values. Each vector represents the model AIC values for multiple
observation sets. Each vector must contain the same number and order of observation sets. The
calculation assumes every possible model is accounted for, and the results should be interpreted
accordingly.

Value

A vector of probability values for each model given, as a list.

See Also

tcplFit, AIC for more information about AIC values.

Examples

Returns the probability for each model, given models with AIC values
ranging from 80 to 100
tcplAICProb(80, 85, 90, 95, 100)

Also works for vectors
m1 <- c(95, 195, 300) ## model 1 for three different observations

58 tcplCascade

m2 <- c(100, 200, 295) ## model 2 for three different observations
tcplAICProb(m1, m2)

tcplAppend Append rows to a table

Description

tcplAppend takes a data.table (dat) and appends the data.table into a database table.

Usage

tcplAppend(dat, tbl, db, lvl = NULL)

Arguments

dat data.table, the data to append to a table

tbl Character of length 1, the table to append to

db Character of length 1, the database containing tbl

lvl Usually Integer to indicate what level to auto-increment

Note

This function is not exported and not intended to be used by the user.

tcplCascade Do a cascading delete on tcpl screening data

Description

tcplCascade deletes the data for the given id(s) starting at the processing level given. The delete
will cascade through all subsequent tables.

Usage

tcplCascade(lvl, type, id)

Arguments

lvl Integer of length 1, the first level to delete from

type Character of length 1, the data type, "sc" or "mc"

id Integer, the id(s) to delete. See details for more information.

tcplCode2CASN 59

Details

The data type can be either ’mc’ for multiple concentration data, or ’sc’ for single concentration
data. Multiple concentration data will be loaded into the level tables, whereas the single concentra-
tion will be loaded into the single tables.

If lvl is less than 3, id is interpreted as acid(s) and if lvl is greater than or equal to 3, id is interpreted
as aeid(s).

Note

This function is not exported and not intended to be used by the user.

tcplCode2CASN Convert chemical code to CAS Registry Number

Description

tcplCode2CASN takes a code and converts it CAS Registry Number.

Usage

tcplCode2CASN(code)

Arguments

code Character of length 1, a chemical code

Details

The function checks for the validity of the CAS Registry Number. Also, the ToxCast data includes
chemicals for which there is no CASRN. The convention for these chemicals is to give them a
CASRN as NOCAS_chid; the code for these compounds is CNOCASchid. The function handles
the NOCAS compounds as they are stored in the database, as shown in the example below.

Value

A CAS Registry Number.

Examples

tcplCode2CASN("C80057")
tcplCode2CASN("C09812420") ## Invalid CASRN will give a warning
tcplCode2CASN("CNOCAS0015") ## The underscore is reinserted for NOCAS codes

60 tcplCytoPt

tcplCytoPt Calculate the cytotoxicity point based on the "burst" endpoints

Description

tcplCytoPt calculates the cytotoxicity point and average cytotoxicity distribution based on the
activity in the "burst" assay endpoints.

Usage

tcplCytoPt(
chid = NULL,
aeid = NULL,
flag = TRUE,
min.test = TRUE,
default.pt = 3

)

Arguments

chid Integer, chemical ID values to subset on

aeid Integer, assay endpoint ID values to override the "burst assay" definitions

flag Integer, mc6_mthd_id values to be passed to tcplSubsetChid

min.test Integer or Boolean, the number of tested assay endpoints required for a chemical
to be used in calculating the "global MAD."

default.pt Numeric of length 1, the default cytotoxicity point value

Details

tcplCytoPt provides estimates for chemical-specific cytotoxicity distributions (more information
available in the vignette.) Before calculating the cytotoxicity distributions, the level 5 data is sub-
setted by the tcplSubsetChid function.

The ’chid’ parameter specifies a subset of chemicals to use in the calculations, given by chemical
ID (chid). The ’aeid’ parameter specifies which assays to use in calculating the cytotoxicity point
and distribution. By default tcplCytoPt will use all available chemicals and the assay endpoints
defined by the ’burst_assay’ field in the "assay_component_endpoint" table. The examples show
how to identify the "burst" endpoints.

tcplCytoPt returns the cytotoxicity point (the AC50 values of the active "burst" endpoints), the
corresponding MAD, and the global MAD (median of the calculated MAD values). Not every
chemical must be tested in every "burst" endpoint. The ’min.test’ parameter allows the user to spec-
ify a minimum number of tested assay endpoints as a requirement for MAD values to be included
in the global MAD calculation. For example, suppose the user supplies 10 "burst" assays. The user
can choose to require a chemical to be tested in at least 5 of those assays for it’s MAD value to
be included in the global MAD calculation. Having chemicals with many less "burst" endpoints
tested may inflate or deflate the global MAD calculation. By default (values of TRUE or NULL),

tcplCytoPt 61

tcplCytoPt requires a chemical to be tested in at least 80% of the given "burst" assays. The user
can also provide ’min.test’ values of FALSE (indicating to include all MAD values), or a number
(indicating a specific number of endpoints).

Chemicals without at least 2 active "burst" assays do not have a MAD value, and the cytotoxicity
point is defined by the ’default.pt’ parameter. The default value for ’default.pt’ is 3.

The resulting data.table has the following fields:

1. "chid" – The chemical ID.

2. "code" – The chemical code.

3. "chnm" – The chemical name.

4. "casn" – The chemical CASRN.

5. "med" – The median of the "burst" endpoint log(AC50)

6. "mad" – The MAD of the "burst" endpoint log(AC50) values.

7. "ntst" – The number of "burst" endpoints tested.

8. "nhit" – The number of active "burst" endpoints.

9. "used_in_global_mad_calc" – TRUE/FALSE, whether the mad value was used in the global
MAD calculation.

10. "global_mad" – The median of the "mad" values where "used_in_global_mad_calc" is TRUE.

11. "cyto_pt" – The cytotoxicity point, or the value in "med" when "nhit" is at least 2.

12. "cyto_pt_um" – 10cyto_pt

13. "lower_bnd_um" – 10cyto_pt−3global_mad

Value

A data.table with the cytotoxicity distribution for each chemical. The definition of the field names
are listed under "details."

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfDefault()

Can only calculate the cytotox burst if using the MySQL database and
TCPL_DRVR == 'MySQL'

if (getOption("TCPL_DRVR") == "MySQL") {

Load the "burst" endpoints -- none are defined in the example dataset
tcplLoadAeid(fld = "burst_assay", val = 1)

Calculate the cytotoxicity distributions using both example endpoints
tcplCytoPt(aeid = 1:2)

The above example does not calculate a global MAD, because no chemical

62 tcplDefine

hit both endpoints. (This makes sense, because both endpoints are
derived from one component, where one endpoint is acitivity in the
up direction, and the other is activity in the down direction.)
Note, the cyto_pt is also 3 for all chemicals, because the function
requires at least two endpoints to calculate a cytotoxicity point. If
the user wishes to use one assay, this function is not necessary.

Changing 'default.pt' will change cyto_pt in the resulting data.table
tcplCytoPt(aeid = 1:2, default.pt = 6)
}

Reset configuration
options(conf_store)

tcpldbStats Get summary statistics for the database

Description

tcpldbStats takes a string(type) and an optional parameter(val) to return the summary statistics on
the entire tcplLite database When type = "all" the val is ignored. the function returns the number of
distinct spid and aeids in the database at each level When type = "aeid", the val parameter has to be
a valid aeid in the database. The function returns a table consisting of the number of distinct spids
at each level of processing for the aeid given in ’val’ When type = "spid", the val parameter has to
be a valid spid in the database. The function returns a table consisting of the number of distinct
aeids at each level of processing for the given spid in ’val’

Usage

tcpldbStats(type = "all", val = NULL)

Arguments

type String either "all", "aeid" or "spid"

val integer if type = "aeid" , string if type = "spid"

tcplDefine Load data dictionary descriptions

Description

tcplDefine queries the tcpl databases and returns field descriptions from the data dictionary.

Usage

tcplDefine(val = NULL)

tcplDelete 63

Arguments

val The values to query on. Can be any combination of table names (to return all of
its field descriptions) and field names

Details

Short descriptions of fields for different tables are stored in a data dictionary. Query by table name
to retrieve descriptions of each field in the given table, and/or query by field name to retrieve de-
scriptions on every field with the given name, regardless of which table they belong to.

Value

A data.table with the data dictionary information for the given parameters.

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConf(drvr = "example")

Passing no parameters returns all of the fields described in the data
dictionary
tcplDefine()

Specifying table names of 'chemical' and 'sample' yields all of the
fields from the 'chemical' and 'sample' tables
tcplDefine(c("chemical", "sample"))

Specifying a field of 'wllt' yields all of the fields from any table that
contains 'wllt' as a field
tcplDefine("wllt")

Specifying a combination of table and field names results in all of the
fields which are contained in the given tables and all of the given fields
found in any table
tcplDefine(c("chemical", "spid", "wllt"))

Reset configuration
options(conf_store)

tcplDelete Delete rows from tcpl databases

Description

tcplDelete deletes rows from the given table and database.

64 tcplFit

Usage

tcplDelete(tbl, fld, val, db)

Arguments

tbl Character, length 1, the table to delete from

fld Character, the field(s) to query on

val List, vectors of values for each field to query on. Must be in the same order as
’fld’.

db Character, the database containing the table

Note

This function is not exported and not intended to be used by the user.

See Also

tcplSendQuery

tcplFit Fit the data with the constant, hill, and gain-loss models

Description

tcplFit fits the constant, hill, and gain-loss models to the given data and returns some summary
statistics and the fit parameters in a list.

Usage

tcplFit(
logc,
resp,
bmad,
force.fit = FALSE,
bidirectional = FALSE,
verbose = FALSE,
...

)

Arguments

logc Numeric, log concentration values

resp Numeric, normalized response values

bmad Numeric, the baseline median absolute deviation for the entire assay

force.fit Logical, TRUE indicates to attempt fitting every concentration series

tcplFit2 65

bidirectional Boolean If TRUE, bidirectional negative data before fitting (default=FALSE)
The original version of the code required the data to start at small values and
rise, so that negative curves had to be bidirectionalped outside the function, and
TOP was always positive. Setting bidirectional to TRUE allows both rising and
falling curves

verbose Boolean If TRUE print warning messages

... Any other data to be included in list output.

Details

when at least one median value is greater than 3*bmad.

Value

List of summary values and fit parameters for the given data.

See Also

tcplObjCnst, tcplObjHill, tcplObjGnls, constrOptim

Examples

logc <- 1:10
resp <- sapply(1:10, tcplHillVal, ga = 5, tp = 50, gw = 0.5)
params <- tcplFit(logc = logc, resp = resp, bmad = 10)
plot(resp ~ logc)
tcplAddModel(pars = params, modl = "hill")

tcplFit2 tcpl Wrapper for tcplfit2_core including additional calculations to fit
into new schema

Description

tcpl Wrapper for tcplfit2_core including additional calculations to fit into new schema

Usage

tcplFit2(
dat,
fitmodels = c("cnst", "hill", "gnls", "poly1", "poly2", "pow", "exp2", "exp3", "exp4",

"exp5"),
bmed = NULL,
bidirectional = TRUE

)

66 tcplFit2_unnest

Arguments

dat output from level 3 processing
fitmodels list of the models that should be fit with the data
bmed baseline value, typically should be 0
bidirectional boolean, default is TRUE (bidirectional fitting)

Value

Data.table with an additional column fitparams that includes all of the fitting parameters

tcplFit2_nest Nest dataframe into a list that is readable by tcplfit2

Description

Nest dataframe into a list that is readable by tcplfit2

Usage

tcplFit2_nest(dat)

Arguments

dat a dataframe that has all of the fitting parameters in the style of tcplloaddata

Value

a list of fitting parameters that can be consumed by tcplfit2

tcplFit2_unnest Unnest tcplfit2 parameters into a dataframe

Description

Unnest tcplfit2 parameters into a dataframe

Usage

tcplFit2_unnest(output)

Arguments

output list of output from tcplfit2

Value

list of parameters unnested and compiled into a dataframe

tcplGetAeid 67

tcplGetAeid get Aeid for endpoint name

Description

tcplGetAeid takes a string(name) and finds the assay component endpoint names that match the
string and the aeids associated with those names.The function performs a regular expression like
matching for strings in the assay component endpoint name column in the assay component end-
point table.

Usage

tcplGetAeid(name)

Arguments

name A string that will be matched to the assay component endpoint name

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfExample()

Search for aenm (assay name) case insensitive
tcplGetAeid("TOX21")
tcplGetAeid("tox21")

Reset configuration
options(conf_store)

tcplggplot tcplggplot

Description

tcplggplot

Usage

tcplggplot(dat, lvl = 5, verbose = FALSE)

68 tcplListFlds

Arguments

dat data table with all required conc/resp data

lvl integer level of data that should be plotted level 4 - all fit models level 5 - all fit
models and winning model with hitcall level 6 - include all flags

verbose boolean should plotting include table of values next to the plot

Value

A ggplot object or grob with accompanied table depending on verbose option

tcplHit2 Hitcalling with tcplfit2

Description

Hitcalling with tcplfit2

Usage

tcplHit2(mc4, coff)

Arguments

mc4 data.table with level 4 data

coff cutoff value for hitcalling

Value

Data.table with key value pairs of hitcalling parameters

tcplListFlds Load the field names for a table

Description

tcplListFlds loads the column names for the given table and database.

Usage

tcplListFlds(tbl, db = getOption("TCPL_DB"))

Arguments

tbl Character of length 1, the tcpl database table

db Character of length 1, the tcpl database

tcplLoadChem 69

Details

This function can be particularly useful in defining the ’fld’ param in the tcplLoad- functions.

Value

A string of field names for the given table.

Examples

Gives the fields in the mc1 table
tcplListFlds("mc1")

tcplLoadChem Load sample/chemical information

Description

tcplLoadChem queries the tcpl database and returns the chemical information for the given field
and values.

Usage

tcplLoadChem(field = NULL, val = NULL, exact = TRUE, include.spid = TRUE)

Arguments

field Character of length 1, the field to query on

val Vector of values to subset on

exact Logical, should chemical names be considered exact?

include.spid Logical, should spid be included?

Details

The ’field’ parameter is named differently from the ’fld’ parameter seen in other functions because
it only takes one input.

In the MySQL environment the user should be able to give partial chemical name strings, to find
chemicals with similar names. For example, setting ’val’ to "phenol" when ’field’ is "chnm" and
’exact’ is FALSE might pull up the chemicals "Bisphenol A" and "4-Butylphenol". More technically,
setting ’exact’ to FALSE passes the string in ’val’ to an RLIKE statement within the MySQL query.

Value

A data.table with the chemical information for the given parameters

70 tcplLoadClib

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfExample()

Passing no parameters gives all of the registered chemicals with their
sample IDs
tcplLoadChem()

Or the user can exclude spid and get a unique list of chemicals
tcplLoadChem(include.spid = FALSE)

In addition, the user can retrieve only the registered chemicals from the chemical table
tcplLoadChem(field = 'chem.only')

Other examples:
tcplLoadChem(field = "chnm", val = "Bisphenol A")
tcplLoadChem(field = "chid", val = 20182)

Reset configuration
options(conf_store)

tcplLoadClib Load chemical library information

Description

tcplLoadClib queries the tcpl databases and returns information about the chemical library.

Usage

tcplLoadClib(field = NULL, val = NULL)

Arguments

field Character of length 1, 'chid' or 'clib', whether to search by chemical id
(chid), or chemical library (clib)

val The values to query on

Details

Chemicals are stored in different libraries by chemical ID. Therefore, it is not possible to delineate
samples with the same chemical ID into two distinct chemical libraries. However, it is possible for
a chemical ID to belong to more than one (or no) chemical libraries.

When chemicals belong to more than one library, the chemical is listed multiple times (one for each
distinct library).

tcplLoadConcUnit 71

Value

A data.table with the chemical library information for the given parameters.

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfExample()

Passing no parameters gives all of the chemical ISs that have a chemical
library registered
clib <- tcplLoadClib()

Notice there are more rows in tcplLoadClib than in tcplLoadChem,
indicating some chemicals must belong to more than library.
chem <- tcplLoadChem(include.spid = FALSE)
nrow(chem)
nrow(clib)

It is possible that some chemicals do not have a chemical library
registered, although this is not the case in the example data.
all(chem$chid %in% clib$chid)

Show the unique chemical libraries
clib[, unique(clib)]

Specifying a chemical library will not show what other libraries a
chemical might belong to.
tcplLoadClib(field = "clib", val = "TOXCAST")
tcplLoadClib(field = "chid", val = 20182)

Reset configuration
options(conf_store)

tcplLoadConcUnit Load concentration units for assay endpoints

Description

tcplLoadUnit queries the tcpl databases and returns a data.table with the concentration units for
the given assay endpoint ids (spid).

Usage

tcplLoadConcUnit(spid)

72 tcplLoadData

Arguments

spid Integer, assay endpoint ids

Value

A data.table containing level 3 correction methods for the given spids.

See Also

tcplQuery, data.table

tcplLoadData Load tcpl data

Description

tcplLoadData queries the tcpl databases and returns a data.table with data for the given level and
data type.

Usage

tcplLoadData(lvl, fld = NULL, val = NULL, type = "mc", add.fld = TRUE)

Arguments

lvl Integer of length 1, the level of data to load

fld Character, the field(s) to query on

val List, vectors of values for each field to query on. Must be in the same order as
’fld’.

type Character of length 1, the data type, "sc" or "mc"

add.fld Boolean if true we want to return the additional parameters fit with tcplfit2

Details

The data type can be either ’mc’ for mutliple concentration data, or ’sc’ for single concentration
data. Multiple concentration data will be loaded into the ’mc’ tables, whereas the single concentra-
tion will be loaded into the ’sc’ tables.

Setting ’lvl’ to "agg" will return an aggregate table containing the m4id with the concentration-
response data and m3id to map back to well-level information.

Leaving fld NULL will return all data.

Valid fld inputs are based on the data level and type:

type lvl Queried tables
sc 0 sc0
sc 1 sc0, sc1

tcplLoadUnit 73

sc agg sc1, sc2_agg
sc 2 sc2
mc 0 mc0
mc 1 mc0, mc1
mc 2 mc0, mc1, mc2
mc 3 mc0, mc1, mc3
mc agg mc3, mc4_agg
mc 4 mc4
mc 5 mc4, mc5
mc 6 mc4, mc6
mc 7 mc4, mc7

Value

A data.table containing data for the given fields.

See Also

tcplQuery, data.table

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfExample()

Load all of level 0 for multiple-concentration data, note 'mc' is the
default value for type
tcplLoadData(lvl = 0)

Load all of level 1 for single-concentration
tcplLoadData(lvl = 1, type = "sc")

List the fields available for level 1, coming from tables mc0 and mc1
tcplListFlds(tbl = "mc0")
tcplListFlds(tbl = "mc1")

Load level 0 data where the well type is "t" and the concentration
index is 3 or 4
tcplLoadData(lvl = 1, fld = c("wllt", "cndx"), val = list("t", c(3:4)))

Reset configuration
options(conf_store)

tcplLoadUnit Load response units for assay endpoints

74 tcplLvlCount

Description

tcplLoadUnit queries the tcpl databases and returns a data.table with the response units for the
given assay endpoint ids (aeid).

Usage

tcplLoadUnit(aeid)

Arguments

aeid Integer, assay endpoint ids

Value

A data.table containing level 3 correction methods for the given aeids.

See Also

tcplQuery, data.table

tcplLvlCount Load tcpl level counts

Description

tcplLvlCount queries the tcpl databases and returns a data frame with count totals for the given
levels and data type.

Usage

tcplLvlCount(lvls = NULL, type = "mc")

Arguments

lvls Integer or list of Integers, The levels of data to load

type Character of length 1, the data type, "sc" or "mc"

Details

The data type can be either ’mc’ for mutliple concentration data, or ’sc’ for single concentration
data.

Leaving lvls NULL will return all data.

Value

A data.table containing data for the given fields.

tcplMakeAeidMultiPlts 75

See Also

tcplQuery, data.table

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
TCPLlite <- file.path(system.file(package = "tcpl"), "example")
tcplConf(db = TCPLlite, user = NA, host = NA, drvr = "tcplLite")

Get all counts for level 1 for multiple-concentration
tcplLvlCount(lvls = 1)

Not run:
Get all counts for levels 4 through 7 for multiple-concentration
tcplLvlCount(lvls = 4:7)

Get all counts for multiple-concentration data, note 'mc' is the
default value for type
tcplLvlCount()

End(Not run)

Reset configuration
options(conf_store)

tcplMakeAeidMultiPlts Create a .pdf with all dose-response plots for a given aeid, 6 per page

Description

tcplMakeAeidMultiPlts Create a .pdf with all dose-response plots for a given aeid

Usage

tcplMakeAeidMultiPlts(
aeid,
lvl = 4L,
fname = NULL,
odir = getwd(),
clib = NULL,
hitc.all = TRUE

)

76 tcplMakeAeidPlts

Arguments

aeid Integer of length 1, the assay endpoint id

lvl Integer of length 1, the data level to use (4-7)

fname Character, the filename

odir The directory to save the .pdf file in

clib Character, the chemical library to subset on, see tcplLoadClib for more infor-
mation.

hitc.all If FALSE, only plots with hitc==1 will be displayed

Details

tcplMakeAeidMultiPlts provides a wrapper for tcplMultiplot, allowing the user to produce
PDFs with the curve plots without having to separately load all of the data and establish the PDF
device.

If ’fname’ is NULL, a default name is given by concatenating together assay information.

tcplMakeAeidPlts Create a .pdf with dose-response plots

Description

tcplMakeAeidPlts creates a .pdf file with the dose-response plots for the given aeid.

Usage

tcplMakeAeidPlts(
aeid,
compare = F,
lvl = 4L,
fname = NULL,
odir = getwd(),
ordr.fitc = TRUE,
clib = NULL,
cnst = NULL

)

Arguments

aeid Integer of length 1 or 2, the assay endpoint id

compare Boolean to for comparison of aeids if length(aeid)>1

lvl Integer of length 1, the data level to use (4-7). Only level 5-6 valid for compare
aeids.

fname Character, the filename

odir The directory to save the .pdf file in

tcplMakeChidMultiPlts 77

ordr.fitc Logical, should the fits be ordered by fit category?

clib Character, the chemical library to subset on, see

cnst Constant hline to draw on plot tcplLoadClib for more information.

Details

tcplMakeAeidPlts provides a wrapper for tcplPlotFits, allowing the user to produce PDFs with
the curve plots without having to separately load all of the data and establish the PDF device.

If ’fname’ is NULL, a default name is given by concatenating together assay information.

Note, the default value for ordr.fitc is TRUE in tcplMakeAeidPlts, but FALSE in tcplPlotFits

Note, only level 5 or level 6 is valid for comparing 2 aeids.

Examples

Not run:
Will produce the same result as the example for tcplPlotFits
tcplMakeAeidPlts(aeid = 1, lvl = 6, ordr.fitc = FALSE)

End(Not run)

Not run:
Compare two aeids on same plots
tcplMakeAeidPlts(aeid = c(1,2), compare=T, lvl = 6)

End(Not run)

tcplMakeChidMultiPlts Create a .pdf with all dose-response plots for a given chid, 6 per page

Description

tcplMakeChidMultiPlts Create a .pdf with all dose-response plots for a given chid

Usage

tcplMakeChidMultiPlts(
chid,
lvl = 4L,
fname = NULL,
odir = getwd(),
clib = NULL,
hitc.all = TRUE

)

78 tcplMultiplot

Arguments

chid Integer of length 1, the chemical id

lvl Integer of length 1, the data level to use (4-7)

fname Character, the filename

odir The directory to save the .pdf file in

clib Character, the chemical library to subset on, see tcplLoadClib for more infor-
mation.

hitc.all If FALSE, only plots with hitc==1 will be displayed

Details

tcplMakeChidMultiPlts provides a wrapper for tcplMultiplot, allowing the user to produce
PDFs with the curve plots without having to separately load all of the data and establish the PDF
device.

If ’fname’ is NULL, a default name is given by concatenating together assay information.

tcplMultiplot Plot summary fits based on fit and dose-response data

Description

tcplMultiplot takes the dose-response and fit data and produces summary plot figures.

Usage

tcplMultiplot(dat, agg, flg = NULL, boot = NULL, browse = FALSE, hitc.all)

Arguments

dat data.table, level 4 or level 5 data, see details.

agg data.table, concentration-response aggregate data, see details.

flg data.table, level 6 data, see details.

boot data.table, level 7 data, see details.

browse Logical, should browser() be called after every plot?

hitc.all Logical, if FALSE, only plots with hitc==1 will be displayed

Details

The data for ’dat’, ’agg’, and ’flg’ should be loaded using the tcplLoadData function with the
appropriate ’lvl’ parameter. See help page for tcplLoadData for more information.

If dat contains only one aeid, plots will be ordered by chemical name (chnm). Otherwise, plots are
ordered by assay endpoint name (aenm). ## While it is most likely the user will want to just save
all of the plots ## to view in a PDF, the ’browse’ parameter can be used to quickly view ## some
plots.

tcplPlot 79

tcplPlot #——————————————————————————- Generic
Plotting Function for tcpl

Description

tcplLoadData queries the tcpl databases and returns a plot for the given level and data type.

Usage

tcplPlot(
lvl = 5,
fld = "m4id",
val = NULL,
type = "mc",
by = NULL,
output = c("console", "pdf", "png", "jpg", "svg", "tiff"),
fileprefix = paste0("tcplPlot_", Sys.Date()),
multi = NULL,
verbose = FALSE,
nrow = NULL,
ncol = NULL,
dpi = 600

)

Arguments

lvl Integer of length 1, the level of data to load.

fld Character, the field(s) to query on.

val List, vectors of values for each field to query on. Must be in the same order as
’fld’.

type Character of length 1, the data type, "sc" or "mc".

by Parameter to divide files into e.g. "aeid".

output How should the plot be presented. To view the plot in application, use "console",
or to save as a file type, use "pdf", "jpg", "png", "svg", or "tiff".

fileprefix Prefix of file when saving.

multi Boolean, by default TRUE for "pdf". If multi is TRUE, output by default 4 plots
per page for ’verbose’ = TRUE and 6 plots per page for ’verbose’ = FALSE.

verbose Boolean, by default FALSE. If TRUE, a table with fitting parameters is included
with the plot.

nrow Integer, number of rows in multiplot. By default 2.

ncol Integer, number of columns in multiplot. By default 3, 2 if verbose.

dpi Integer, image print resolution. By default 600.

80 tcplPlotFitc

Details

The data type can be either ’mc’ for mutliple concentration data, or ’sc’ for single concentration
data. Multiple concentration data will be loaded into the ’mc’ tables, whereas the single concentra-
tion will be loaded into the ’sc’ tables.

Setting ’lvl’ to "agg" will return an aggregate table containing the m4id with the concentration-
response data and m3id to map back to well-level information.

Leaving fld NULL will return all data.

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfExample()

tcplPlot(lvl = 4, fld = "m4id", val = c(18609966)) ## Create a level 4 plot

Reset configuration
options(conf_store)

tcplPlotFitc Plot the fit category tree

Description

tcplPlotFitc makes a plot showing the level 5 fit categories.

Usage

tcplPlotFitc(fitc = NULL, main = NULL, fitc_sub = NULL)

Arguments

fitc Integer, the fit categories

main Character of length 1, the title (optional)

fitc_sub, Integer, a subset of fit categories to plot

Note

Suggested device size (inches): width = 10, height = 7.5, pointsize = 9

tcplPlotFits 81

Examples

Not run:
Plot visualization of fit categories for all level 5 data
tcplPlotFitc(fitc = tcplLoadData(5)$fitc)

End(Not run)

tcplPlotFits Plot summary fits based on fit and dose-response data

Description

tcplPlotFits takes the dose-response and fit data and produces summary plot figures.

Usage

tcplPlotFits(
dat,
agg,
flg = NULL,
boot = NULL,
ordr.fitc = FALSE,
browse = FALSE,
cnst = NULL,
orig.aeid = NULL,
compare = F

)

Arguments

dat data.table, level 4 or level 5 data, see details.

agg data.table, concentration-response aggregate data, see details.

flg data.table, level 6 data, see details.

boot data.table, level 7 data, see details.

ordr.fitc Logical, should the fits be ordered by fit category?

browse Logical, should browser() be called after every plot?

cnst Constant hline to draw on plot

orig.aeid Original aeid list from tcplMakeAeidPlts to maintain order

compare boolean to determine if aeids should be compared on same plot

82 tcplPlotFits

Details

The data for ’dat’, ’agg’, and ’flg’ should be loaded using the tcplLoadData function with the
appropriate ’lvl’ parameter. See help page for tcplLoadData for more information.

Supplying level 4 data for the ’dat’ parameter will result in level 4 plots. Similarly, supp

If fits are not ordered by fit category, they will be ordered by chemical ID. Inputs with multiple
assay endpoints will first be ordered by assay endpoint ID.

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfDefault()

tcplPlotFits needs data.tables supplying the concentration/response
data stored in mc4_agg, as well as the fit information from mc4 or mc5.
Additionally, tcplPlotFits can take level 6 data from mc6 and add the
flag information to the plots. The following shows how to make level 5
plots. Adding the 'flg' parameter would result in level 6 plots, and
loading level 4, rather than level 5 data, would result in level 4 plots.

l5 <- tcplLoadData(lvl = 5, fld = "m4id", val = 18609966)
l4_agg <- tcplLoadData(lvl = "agg", fld = "m4id", val = 18609966)

Not run:
pdf(file = "tcplPlotFits.pdf", height = 6, width = 10, pointsize = 10)
tcplPlotFits(dat = l5, agg = l4_agg)
graphics.off()

End(Not run)

While it is most likely the user will want to just save all of the plots
to view in a PDF, the 'browse' parameter can be used to quickly view
some plots.

Start by identifying some sample IDs to plot, then call tcplPlotFits with
a subset of the data. This browse function is admittedly clunky.
bpa <- tcplLoadChem(field = "chnm", val = "Bisphenol A")[, spid]
l5_sub <- l5[spid %in% bpa]
Not run:
tcplPlotFits(dat = l5_sub,

agg = l4_agg[m4id %in% l5_sub$m4id],
browse = TRUE)

End(Not run)

Reset configuration
options(conf_store)

tcplPlotlyPlot 83

tcplPlotlyPlot tcplPlotlyPlot

Description

tcplPlotlyPlot

Usage

tcplPlotlyPlot(dat, lvl = 5)

Arguments

dat data table with all required conc/resp data

lvl integer level of data that should be plotted level 4 - all fit models level 5 - all fit
models and winning model with hitcall level 6 - include all flags

Value

A plotly plot

tcplPlotM4ID Plot fit summary plot by m4id

Description

tcplPlotM4ID creates a summary plots for the given m4id(s) by loading the appropriate data from
the tcpl databases and sending it to tcplPlotFits

Usage

tcplPlotM4ID(m4id, lvl = 4L)

Arguments

m4id Integer, m4id(s) to plot

lvl Integer, the level of data to plot

84 tcplPlotPlate

Details

A level 4 plot (’lvl’ = 4) will plot the concentration series and the applicable curves, without an
indication of the activity call or the winning model. Level 4 plots can be created without having
done subsequent processing.

Level 5 plots include the level 4 information with the activity call and model selection. The winning
model will be highlighted red in the side panel containing the summary statistics. Level 6 plots, in
addition the all of the level 4 and 5 information, include the positive flag IDs. If the flag has an
associated value, the value will be in parentheses following the flag ID. Level 7 plots in addition
to all of the level 4, 5, and 6 information, include the AC50 confidence interval and hit percentage
information from bootstrapping.

See Also

tcplPlotFits, tcplMakeAeidPlts

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfExample()

tcplPlotM4ID(m4id = 18609966, lvl = 4) ## Create a level 4 plot
tcplPlotM4ID(m4id = 18609966, lvl = 5) ## Create a level 5 plot
tcplPlotM4ID(m4id = 18609966, lvl = 6) ## Create a level 6 plot

#' ## Reset configuration
options(conf_store)

tcplPlotPlate Plot plate heatmap

Description

tcplPlotPlate generates a heatmap of assay plate data

Usage

tcplPlotPlate(dat, apid, id = NULL, quant = c(0.001, 0.999))

Arguments

dat data.table containing tcpl data
apid Character of length 1, the apid to plot
id Integer of length 1, the assay component id (acid) or assay endpoint id (aeid),

depending on level. Only need to specify for multiplexed assays when more
than one acid/aeid share an apid.

quant Numeric vector, the range of data to include in the legend

tcplPrepOtpt 85

Details

The legend represents the range of the data supplied to dat, for the applicable ID. The additional
horizontal lines on the legend indicate the range of the plotted plate, to show the relation of the
plate to the assay as a whole. A plot with a legend specific for the given apid can be created by only
supplying the data for the apid of interest to ’dat’.

The quant parameter, by default including 99.8 allows for extreme outliers without losing resolution.
Outliers in either direction will be highlighted with a dark ring, as seen in the example. A NULL
value for ’quant’ will not restrict the data at all, and will use the full range for the legend.

Wells with a well quality of 0 (only applicable for level 1 plots), will have an "X" through their
center.

Note

For the optimal output size, use width = 10, height = 10*(2/3), pointsize = 10, units = "in"

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfDefault()

d1 <- tcplLoadData(lvl = 1, fld = "acid", val = 1)
Not run:
tcplPlotPlate(dat = d1, apid = "09Apr2014.Plate.17")

End(Not run)

Reset configuration
options(conf_store)

tcplPrepOtpt Map assay/chemical ID values to annotation information

Description

tcplPrepOtpt queries the chemical and assay information from the tcpl database, and maps the
annotation information to the given data.

Usage

tcplPrepOtpt(dat, ids = NULL)

Arguments

dat data.table, output from tcplLoadData

ids Character, (optional) a subset of ID fields to map

86 tcplRun

Details

tcplPrepOtpt is used to map chemical and assay identifiers to their respective names and annota-
tion information to create a human-readable table that is more suitable for an export/output.

By default the function will map sample ID (spid), assay component id (acid), and assay endpoint
ID (aeid) values. However, if ’ids’ is not null, the function will only attempt to map the ID fields
given by ’ids.’

Value

The given data.table with chemical and assay information mapped

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfExample()

Load some example data
d1 <- tcplLoadData(1)

Check for chemical name in 'dat'
"chnm" %in% names(d1) ## FALSE

#' ## Map all annotations
d2 <- tcplPrepOtpt(d1) ##
"chnm" %in% names(d2) ## TRUE
"acnm" %in% names(d2) ## TRUE

Map chemical annotation only
d3 <- tcplPrepOtpt(d1, ids = "spid")
"chnm" %in% names(d3) ## TRUE
"acnm" %in% names(d3) ## FALSE

Reset configuration
options(conf_store)

tcplRun Perform data processing

Description

tcplRun is the function for performing the data processing, for both single-concentration and
multiple-concentration formats.

tcplRun 87

Usage

tcplRun(
asid = NULL,
slvl,
elvl,
id = NULL,
type = "mc",
mc.cores = NULL,
outfile = NULL,
runname = NULL

)

Arguments

asid Integer, assay source id

slvl Integer of length 1, the starting level to process

elvl Integer of length 1, the ending level to process

id Integer, rather than assay source id, the specific assay component or assay end-
point id(s) (optional)

type Character of length 1, the data type, "sc" or "mc"

mc.cores Integer of length 1, the number of cores to use, set to 1 when using Windows
operating system

outfile Character of length 1, the name of the log file (optional)

runname Character of length 1, the name of the run to be used in the outfile (optional)

Details

The tcplRun function is the core processing function within the package. The function acts as a
wrapper for individual processing functions, (ie. mc1, sc1, etc.) that are not exported. If possible,
the processing is done in parallel by ’id’ by utilizing the mclapply function within the parallel
package.

If slvl is less than 4, ’id’ is interpreted as acid and if slvl is 4 or greater ’id’ is interpreted as aeid.
Must give either ’asid’ or ’id’. If an id fails no results get loaded into the database, and the id does
not get placed into the cue for subsequent level processing.

The ’type’ parameter specifies what type of processing to complete: "mc" for multiple-concentration
processing, and "sc" for single-concentration processing.

Value

A list containing the results from each level of processing. Each level processed will return a named
logical vector, indicating the success of the processing for the id.

88 tcplSubsetChid

tcplSubsetChid Subset level 5 data to a single sample per chemical

Description

tcplSubsetChid subsets level 5 data to a single tested sample per chemical. In other words, if a
chemical is tested more than once (a chid has more than one spid) for a given assay endpoint, the
function uses a series of logic to select a single "representative" sample.

Usage

tcplSubsetChid(dat, flag = TRUE, type = "mc", export_ready = TRUE)

Arguments

dat data.table, a data.table with level 5 data

flag Integer, the mc6_mthd_id values to go into the flag count, see details for more
information

type Character of length 1, the data type, "sc" or "mc"

export_ready Boolean, default TRUE, should only export ready 1 values be included in calcu-
lation

Details

tcplSubsetChid is intended to work with level 5 data that has chemical and assay information
mapped with tcplPrepOtpt.

To select a single sample, first a "consensus hit-call" is made by majority rule, with ties defaulting
to active. After the chemical-wise hit call is made, the samples corresponding to to chemical-wise
hit call are logically ordered using the fit category, the number of the flags, and the modl_ga, then
the first sample for every chemical is selected.

The flag param can be used to specify a subset of flags to be used in the flag count. Leaving
flag TRUE utilize all the available flags. Setting flag to FALSE will do the subsetting without
considering any flags.

Value

A data.table with a single sample for every given chemical-assay pair.

See Also

tcplPrepOtpt

tcplVarMat 89

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
tcplConfExample()

Load the example level 5 data
d1 <- tcplLoadData(lvl = 5, fld = "aeid", val = 797)
d1 <- tcplPrepOtpt(d1)

Subset to an example of a duplicated chid
d2 <- d1[chid == 20182]
d2[, list(m4id, hitc, fitc, modl_ga)]

Here the consensus hit-call is 1 (active), and the fit categories are
all equal. Therefore, if the flags are ignored, the selected sample will
be the sample with the lowest modl_ga.
tcplSubsetChid(dat = d2, flag = FALSE)[, list(m4id, modl_ga)]

Reset configuration
options(conf_store)

tcplVarMat Create chemical by assay matrices

Description

tcplVarMat creates chemical by assay matrices.

Usage

tcplVarMat(
chid = NULL,
aeid = NULL,
add.vars = NULL,
row.id = "code",
flag = TRUE,
cyto.pars = list(),
include.na.chid = FALSE,
odir = NULL,
file.prefix = NULL

)

Arguments

chid Integer, chemical ID values to subset on

aeid Integer, assay endpoint ID values to subset on

90 tcplVarMat

add.vars Character, mc4 or mc5 field(s) not included in the standard list to add additional
matrices

row.id Character, the chemical identifier to use in the output

flag Integer or Logical of length 1, passed to tcplSubsetChid

cyto.pars List, named list of arguments passed to tcplCytoPt

include.na.chid

Logical of length 1, whether to include the chemicals not listed in the tcpl
databases (ie. controls)

odir Directory to write comma separated file(s)

file.prefix Character of length 1, prefix to the file name when odir is not NULL

Details

The tcplVarMat function is used to create chemical by assay matrices for different parameters. The
standard list of matrices returned includes:

1. "modl_ga" – The logAC50 (in the gain direction) for the winning model.

2. "hitc" – The hit-call for the winning model.

3. "m4id" – The m4id, listing the concentration series selected by tcplSubsetChid.

4. "zscore" – The z-score based on the output from tcplCytoPt. The formula used for calculat-
ing the z-score is −(modl_ga − cyto_pt)/global_mad

5. "tested" – 1 or 0, 1 indicating the chemical/assay pair was tested in either the single- or
multiple-concentration format

6. "tested_sc" – 1 or 0, 1 indicating the chemical/assay pair was tested in the single-concentration
format

7. "tested_mc" – 1 or 0, 1 indicating the chemical/assay pair was tested in the multiple-concentration
format

8. "ac50" – a modified AC50 table (in non-log units) where assay/chemical pairs that were not
tested, or tested and had a hitcall of 0 or -1 have the value 1e6.

9. "neglogac50" – -log(AC50/1e6) where assay/chemical pairs that were not tested, or tested and
had a hitcall of 0 or -1 have the value 0.

To add additional matrices, the ’add.vars’ parameter can be used to specify the fields from the mc4
or mc5 tables to create matrices for.

When more than one sample is included for a chemical/assay pair, tcplVarMat aggregates multiple
samples to a chemical level call utilizing tcplSubsetChid.

By setting odir the function will write out a csv with, naming the file with the convention: "var_Matrix_date.csv"
where ’var’ is the name of the matrix. A prefix can be added to the output files using the ’file.prefix’
parameter.

When a concentration series has a sample id not listed in the tcpl database, and ’include.na.chid’
is TRUE, the rowname for that series will be the concatenation of "SPID_" and the spid. Note, if
the user gives a subset of chid values to the ’chid’ parameter, ’include.na.chid’ will be set to FALSE
with a warning.

tcplWriteData 91

The tcplVarMat function calls both tcplSubsetChid and tcplCytoPt (which separately calls tcplSubsetChid).
The input for the tcplVarMat ’flag’ parameter is passed to the tcplSubsetChid call used to parse
down the data to create the matrices. The tcplSubsetChid called within tcplCytoPt (to parse
down the cytotoxicity data used to define the "zscore" matrix) can be modified by passing a sepa-
rate ’flag’ element in the list defined by the ’cyto.pars’ parameter.

Value

A list of chemical by assay matrices where the rownames are given by the ’row.id’ parameter, and
the colnames are given by assay endpoint name (aenm).

See Also

tcplSubsetChid

Examples

Store the current config settings, so they can be reloaded at the end
of the examples
conf_store <- tcplConfList()
TCPLlite <- file.path(system.file(package = "tcpl"), "example")
tcplConf(db = TCPLlite, user = NA, host = NA, drvr = "tcplLite")
Not run:
Demonstrate the returned values. Note with no "burst" assays defined in
the example database, the user must provide which aeid values to use
in calculating the cytotoxicity distributions for the 'zscore' matrix.
tcplVarMat(chid = 1:5, cyto.pars = list(aeid = 1:2))

Other changes can be made
tcplVarMat(chid = 1:5, row.id = "chnm", cyto.pars = list(aeid = 1:2))
tcplVarMat(chid = 1:5, add.vars = "max_med", cyto.pars = list(aeid = 1:2))

End(Not run)
Reset configuration
options(conf_store)

tcplWriteData Write screening data into the tcpl databases

Description

tcplWriteData takes a data.table with screening data and writes the data into the given level table
in the tcpl databases.

Usage

tcplWriteData(dat, lvl, type)

92 tcplWriteLvl0

Arguments

dat data.table, the screening data to load

lvl Integer of length 1, the data processing level

type Character of length 1, the data type, "sc" or "mc"

Details

This function appends data onto the existing table. It also deletes all the data for any acids or aeids
dat contains from the given and all downstream tables.

The data type can be either ’mc’ for mutliple concentration data, or ’sc’ for single concentration
data. Multiple concentration data will be loaded into the level tables, whereas the single concentra-
tion will be loaded into the single tables.

Note

This function is not exported and is not intended to be used by the user. The user should only write
level 0 data, which is written with tcplWriteLvl0.

See Also

tcplCascade, tcplAppend, tcplWriteLvl0

tcplWriteLvl0 Write level 0 screening data into the tcpl databases

Description

tcplWriteLvl0 takes a data.table with level 0 screening data and writes the data into the level 0
tables in the tcpl databases.

Usage

tcplWriteLvl0(dat, type)

Arguments

dat data.table, the screening data to load

type Character of length 1, the data type, "sc" or "mc"

write_lvl_4 93

Details

This function appends data onto the existing table. It also deletes all the data for any acids or aeids
dat contains from the given and all downstream tables.

Before writing any data the function maps the assay component source name(s) (acsn) to assay
component id (acid), ensures the proper class on each field and checks for every test compound
sample id (spid where wllt == "t") in the tcpl chemical database. If field types get changed a
warning is given listing the affected fields and they type they were coerced to. If the acsn(s) or
spid(s) do not map to the tcpl databases the function will return an error and the data will not be
written.

The data type can be either ’mc’ for mutliple concentration data, or ’sc’ for single concentration
data. Multiple concentration data will be loaded into the level tables, whereas the single concentra-
tion will be loaded into the single tables.

Note

This function should only be used to load level 0 data.

See Also

tcplCascade, tcplAppend

write_lvl_4 Write level 4 with updated schema

Description

Write level 4 with updated schema

Usage

write_lvl_4(dat)

Arguments

dat output of tcplfit2 that has been unnested into a data.table

Index

∗ data processing functions
tcplRun, 86

∗ datasets
chdat, 7
invitrodb_dd, 12
mc_vignette, 31
mcdat, 30
sc_vignette, 53
scdat, 53

∗ multiple-concentration
mc1, 15
mc2, 16
mc3, 19
mc4, 23
mc5, 25
mc6, 28

∗ single-concentration
sc1, 47
sc2, 50

∗ tcpl abbreviations
is.odd, 12
lu, 14
lw, 15
sink.reset, 55

.buildAssayQ, 4

.convertNames, 4

.load6DR, 5

.plateHeat, 5

.prepField, 6

AIC, 57

blineShift, 6

chdat, 7
check_tcpl_db_schema, 7
Configure functions, 8
constrOptim, 41, 65

data.table, 72–75

flareFunc, 9

Hill model utilites, 10

interlaceFunc, 11
invitrodb_dd, 12
is.odd, 12, 14, 15, 55

length, 15
Load assay information, 13
lu, 12, 14, 15, 55
lw, 12, 14, 15, 55

mc1, 15, 17, 19, 24, 26, 29
mc2, 16, 16, 18, 19, 24, 26, 29
MC2_Methods, 17, 17
mc2_mthds (MC2_Methods), 17
mc3, 7, 16, 17, 19, 23, 24, 26, 29
MC3_Methods, 19, 20
mc3_mthds, 7
mc3_mthds (MC3_Methods), 20
mc4, 16, 17, 19, 23, 25, 26, 29
MC4_Methods, 24
mc4_mthds (MC4_Methods), 24
mc5, 16, 17, 19, 24, 25, 28, 29
MC5_Methods, 26, 26
mc5_mthds (MC5_Methods), 26
mc6, 10, 11, 16, 17, 19, 24, 26, 28, 30
MC6_Methods, 10, 11, 29, 29
mc6_mthds (MC6_Methods), 29
mc_vignette, 31
mcdat, 30
mclapply, 87
Method functions, 39
Models, 24, 41, 56

Query functions, 43

Register/update annotation, 44
registerMthd, 46

94

INDEX 95

sc1, 47, 49, 50
SC1_Methods, 47, 48
sc1_mthds (SC1_Methods), 48
sc2, 47, 50, 52
SC2_Methods, 50, 51
sc2_mthds (SC2_Methods), 51
sc_vignette, 53
scdat, 53
sink, 55
sink.number, 55
sink.reset, 12, 14, 15, 55
Startup, 9
Sys.getenv, 9

tcplAddModel, 56
tcplAICProb, 57
tcplAppend, 58, 92, 93
tcplCascade, 15, 16, 19, 23, 25, 28, 47, 50,

58, 92, 93
tcplCode2CASN, 59
tcplConf (Configure functions), 8
tcplConfDefault (Configure functions), 8
tcplConfExample (Configure functions), 8
tcplConfList (Configure functions), 8
tcplConfLoad (Configure functions), 8
tcplConfReset (Configure functions), 8
tcplConfSave (Configure functions), 8
tcplCytoPt, 60, 90
tcpldbStats, 62
tcplDefine, 62
tcplDelete, 63
tcplFit, 24, 41, 57, 64
tcplFit2, 65
tcplFit2_nest, 66
tcplFit2_unnest, 66
tcplGetAeid, 67
tcplggplot, 67
tcplHillACXX (Hill model utilites), 10
tcplHillConc (Hill model utilites), 10
tcplHillVal (Hill model utilites), 10
tcplHit2, 68
tcplListFlds, 68
tcplLoadAcid (Load assay information),

13
tcplLoadAeid (Load assay information),

13
tcplLoadAid (Load assay information), 13
tcplLoadAsid (Load assay information),

13

tcplLoadChem, 69
tcplLoadClib, 70, 76–78
tcplLoadConcUnit, 71
tcplLoadData, 72, 78, 82, 85
tcplLoadUnit, 73
tcplLvlCount, 74
tcplMakeAeidMultiPlts, 75
tcplMakeAeidPlts, 76, 84
tcplMakeChidMultiPlts, 77
tcplMthdAssign (Method functions), 39
tcplMthdClear (Method functions), 39
tcplMthdList (Method functions), 39
tcplMthdLoad (Method functions), 39
tcplMultiplot, 76, 78, 78
tcplObjCnst, 65
tcplObjCnst (Models), 41
tcplObjGnls, 65
tcplObjGnls (Models), 41
tcplObjHill, 65
tcplObjHill (Models), 41
tcplPlot, 79
tcplPlotFitc, 80
tcplPlotFits, 56, 77, 81, 83, 84
tcplPlotlyPlot, 83
tcplPlotM4ID, 83
tcplPlotPlate, 84
tcplPrepOtpt, 85, 88
tcplQuery, 72–75
tcplQuery (Query functions), 43
tcplRegister (Register/update

annotation), 44
tcplRun, 15, 16, 19, 23, 25, 28, 47, 50, 86
tcplSendQuery, 64
tcplSendQuery (Query functions), 43
tcplSubsetChid, 60, 88, 90, 91
tcplUpdate (Register/update

annotation), 44
tcplVarMat, 89
tcplWriteData, 91
tcplWriteLvl0, 92, 92

unique, 14

which, 14, 15
write_lvl_4, 93

	.buildAssayQ
	.convertNames
	.load6DR
	.plateHeat
	.prepField
	blineShift
	chdat
	check_tcpl_db_schema
	Configure functions
	flareFunc
	Hill model utilites
	interlaceFunc
	invitrodb_dd
	is.odd
	Load assay information
	lu
	lw
	mc1
	mc2
	MC2_Methods
	mc3
	MC3_Methods
	mc4
	MC4_Methods
	mc5
	MC5_Methods
	mc6
	MC6_Methods
	mcdat
	mc_vignette
	Method functions
	Models
	Query functions
	Register/update annotation
	registerMthd
	sc1
	SC1_Methods
	sc2
	SC2_Methods
	scdat
	sc_vignette
	sink.reset
	tcplAddModel
	tcplAICProb
	tcplAppend
	tcplCascade
	tcplCode2CASN
	tcplCytoPt
	tcpldbStats
	tcplDefine
	tcplDelete
	tcplFit
	tcplFit2
	tcplFit2_nest
	tcplFit2_unnest
	tcplGetAeid
	tcplggplot
	tcplHit2
	tcplListFlds
	tcplLoadChem
	tcplLoadClib
	tcplLoadConcUnit
	tcplLoadData
	tcplLoadUnit
	tcplLvlCount
	tcplMakeAeidMultiPlts
	tcplMakeAeidPlts
	tcplMakeChidMultiPlts
	tcplMultiplot
	tcplPlot
	tcplPlotFitc
	tcplPlotFits
	tcplPlotlyPlot
	tcplPlotM4ID
	tcplPlotPlate
	tcplPrepOtpt
	tcplRun
	tcplSubsetChid
	tcplVarMat
	tcplWriteData
	tcplWriteLvl0
	write_lvl_4
	Index

