tlm User's Guide: Effects under linear, logistic and Poisson regression models with transformed variables

Jose Barrera-Gómez ${ }^{* 1,2,3}$ and Xavier Basagaña ${ }^{\dagger 1,2,3}$
${ }^{1}$ ISGlobal, Centre for Research in Environmental Epidemiology (CREAL)
${ }^{2}$ Universitat Pompeu Fabra (UPF)
${ }^{3}$ CIBER Epidemiología y Salud Pública (CIBERESP)

April 10, 2017

Contents

1 Introduction 1
2 Getting started 2
2.1 Fitting the model 2
2.2 Adjusted measures 3
2.3 Adjusted effects 3
3 Illustrative examples 4
3.1 Linear regression model 4
3.1.1 Log transformation in the response 4
3.1.2 Log transformation in the explanatory variable 10
3.1.3 Log transformation in both the response and the explanatory variable 14
3.1.4 Power transformations 19
3.2 Logistic regression model with log transformation in the explanatory variable 23

1 Introduction

This document is a user's guide for the R^{1} package tlm, which provides the effect of an explanatory variable of interest, X, on a response variable, Y, under a linear, logistic or Poisson regression model with transformations in X and/or Y. In the case of the linear regression model, log and power transformations in any of X and Y are allowed. In the case of logistic and Poisson regression models, log or power transformation in X are allowed. Other explanatory variables can be in the model, in which case adjusted measures for Y and adjusted effects of X on Y are automatically computed. The package also works if there

[^0]is no transformation. The package provides both numerical and graphical outputs as well as information on interpreting results. The methodology is described in the manuscript [1], whose illustrative examples, among others, are reproduced here.

2 Getting started

Start an R session and load the package by typing

```
library(tlm)
```

If needed, this user's guide can be recovered by typing

```
vignette("tlm")
```

You can get a brief overview of the package by typing

```
help(package = "tlm")
```


2.1 Fitting the model

The first step is to fit the model in the transformed space (i.e., considering that Y and X are already transformed, if any transformation is assumed). This is performed by the function tlm. We can get information on this function using the help:
?tlm
The main arguments of the function tlm are:

- y : the response variable.
- x : the explanatory variable of interest.
- z: additional explanatory variables in the model. The default value is "none". For a single variable, we need to write just the name of the variable (unquoted); for more than one variable, the names should be passed unquoted and separated by the plus sign (e.g., $z=x 2+x 3+x 4$); in the case of including the remaining variables in data, use just a period (.). No interaction terms are allowed.
- family: the model family. It can be gaussian, for linear regression (default); binomial, for logistic regression with logit link, o poisson, for Poisson regression.
- data: a data.frame containing the variables y, x and those in z, if any.
- ypow and xpow: the power transformations assumed in y and x, respectively. The value 1 (default) means no transformation; the value 0 means log transformation.

We can use the method summary to obtain information on the fitted model. As a result of a call to the function tlm, we obtain an object of class "tlm" which can be passed to the functions MY and effect in order to obtain adjusted measures and effects, respectively, as we will see in next sections.

2.2 Adjusted measures

Once the model has been fitted with the function tlm, the resulting object can be passed to the function MY, which provides measures of the response variable for given values of the explanatory variable. If the model contains other explanatory variables, then adjusted measures are automatically computed. These adjusted measures are obtained by setting the remaining explanatory variables in the model at their means. We can get information on this function using the help:

?MY

The main arguments of the function MY are:

- object: an object of class "tlm", the result of a call to the function tlm.
- x : the value(s) of the explanatory variable of interest for which the expected measure of the response variable should be computed.
- npoints: if x is not provided, the number of points where the measure should be computed. Default is 10 .
- space: the space of the variables in which measures should be computed. It can be "original" (default) or "transformed".
- level: the confidence level for measures. Default is 0.95 .

The function MY automatically provides the unit of the measure (mean, geometric mean, median, probability or logodds, depending on the case).

In addition, the method plot provides, for an object of class "tlm", a graphical representation of adjusted measures. The argument type of the method plot controls whether the plot should be shown in the original space ("original", default) or in the transformed space ("transformed"). The method plot automatically labels the Y axis with the appropriate names of the measure. Using the value "space = diagnosis" provides a diagnostics plot.

2.3 Adjusted effects

The fitted model can be passed to the function effect in order to obtain the effect of X on Y in the original space of the variables, adjusted for those variables in \mathbf{z}, if any. We can get information on this function using the help:
?effect
The main arguments of the function effect are:

- object: an object of class "tlm", the result of a call to the function tlm.
- x1: the value(s) of the explanatory variable where the effect should be computed.
- x2: the alternative value(s) of the explanatory variable (changing from x1) for which the effect should be computed.
- c : the additive change in the explanatory variable.
- q : the multiplicative change in the explanatory variable.
- r : the percent change in the explanatory variable.
- npoints: the number of points where the effect should be computed.
- level: the confidence level for the effect.

In order to compute effects, the change in the explanatory variable should be characterized. It can be done in several ways. For instance, providing: (1) x1 and x 2 ; (2) x 1 and one of c, q or r ; (3) x1, npoints and one of c, q or r. Only one of the arguments c, q or r is used, prevailing c and then q. If no enough arguments are passed, the interquartile range will be considered and a summary effect should be computed, if it exists. If the explanatory variable is categorical, then the effect is computing for a change between the reference level and each of the remaining levels of the explanatory variable. Confidence intervals are computed by transforming the endpoints of the intervals in the transformed scale when it is possible, while non-parametric bootstrap is used otherwise. The function effect automatically provides the unit of the effect measure (mean, geometric mean, median or odds ratio, depending on the case).

In addition, the function effectInfo provides information on interpreting the effect (use ?effectInfo for further details).

3 Illustrative examples

3.1 Linear regression model

3.1.1 Log transformation in the response

Consider the evaluation of the association between the intima media thickness of the carotid artery (IMT), measured in mm, Y, and age, in years, X. Variable Y was \log transformed to achieve normality. The imt data were simulated to emulate true data pattern observed in a real study [2].

First, we can load data and see its first rows and a summary:

```
data(imt)
dim(imt)
## [1] 2784 3
head(imt)
## age imt logimt
## 1 53 0.6588690 -0.41723048
## 2 67 0.9215614 -0.08168583
## 3 57 0.9539836 -0.04710877
## 4 55 0.7226028 -0.32489555
## 5 73 0.7406030-0.30029063
## 6 57 0.7638349 -0.26940367
summary(imt)
```

\#\#	age		imt		
\#\# logimt					
\#	Min. $: 32.00$	Min. $: 0.3755$	Min. $:-0.9794$		
\#\#	1st Qu. $: 51.00$	1st Qu. $: 0.6307$	1st Qu.: -0.4609		
\#\#	Median $: 59.00$	Median $: 0.7257$	Median $:-0.3206$		
\#\#	Mean $: 58.48$	Mean $: 0.7420$	Mean $:-0.3196$		
\#\#	3rd Qu. $: 66.00$	3rd Qu.:0.8324	3rd Qu.:-0.1834		
\#\#	Max. $: 86.00$	Max. $: 1.5788$	Max. $: 0.4567$		

Further information about data is available with the help function, ? imt.
Suppose that we are interested in the effect of age on IMT, under a linear regression model with log transformation in the response variable, IMT. The model can be fitted as follows:

```
modimt <- tlm(y = logimt, x = age, data = imt, ypow = 0)
```

where ypow $=0$ indicates that the response variable is already log transformed. Note that we have not set the family since default family is Gaussian. The fitted model results in:

```
modimt
##
## Linear regression fitted model in the transformed space
## --------------------------------------------------------------
##
## Transformations:
## In the response variable: log
##
## Call:
## lm(formula = logimt ~ age, data = imt)
##
## Coefficients:
## (Intercept) age
## -0.877692 0.009543
```

Further information on the fitted model is available using the method summary:

```
summary(modimt)
##
## Linear regression fitted model in the transformed space
## --------------------------------------------------------------
##
## Transformations:
## In the response variable: log
##
## Call:
## lm(formula = logimt ~ age, data = imt)
```

```
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -0.57891 & -0.11792 & 0.00142 & 0.11879 & 0.61968
\end{tabular}
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.8776919 0.0183979 -47.71 <2e-16 ***
## age 0.0095433 0.0003093 30.86 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1778 on 2782 degrees of freedom
## Multiple R-squared: 0.255,Adjusted R-squared: 0.2547
## F-statistic: 952.2 on 1 and 2782 DF, p-value: < 2.2e-16
```

A numerical representation of the relationship between age and IMT is available using the function MY. As default, the measure of the response variable is computed in 10 points along the range of the explanatory variable:

```
MY(modimt)
##
## Estimated adjusted geometric mean of the response variable in the original space:
##
## X geomMean(Y) lower95% upper95%
## 1 32 0.5642233 0.5545100 0.5741068
## 2 38 0.5974736 0.5891267 0.6059388
## 3 44 0.6326834 0.6257680 0.6396752
## 4 50 0.6699681 0.6643811 0.6756020
## 5 56 0.7094501 0.7046577 0.7142750
## 6 62 0.7512587 0.7460592 0.7564945
## 7 68 0.7955312 0.7885807 0.8025430
## 8 74 0.8424128 0.8327802 0.8521567
## 9 80 0.8920571 0.8791028 0.9052023
## 10 86 0.9446270 0.9278224 0.9617360
```

The number of points can be set using npoints:

```
MY(modimt, npoints = 3)
##
## Estimated adjusted geometric mean of the response variable in the original space:
##
## X geomMean(Y) lower95% upper95%
## 1 32 0.5642233 0.5545100 0.5741068
```

```
## 2 59 0.7300552 0.7252407 0.7349016
## 3 86 0.9446270 0.9278224 0.9617360
```

We can also choose a specific set of values of the explanatory variable for which the measure of the response variable should be computed. For instance, the first and third quartile:

```
q13 <- quantile(imt$age, probs = c(1, 3)/4)
MY(modimt, x = q13)
##
## Estimated adjusted geometric mean of the response variable in the original space:
##
## X geomMean(Y) lower95% upper95%
## 1 51 0.6763924 0.6709922 0.6818362
## 2 66 0.7804912 0.7742493 0.7867834
```

Measures can also be computed in the transformed space:

```
MY(modimt, x = q13, space = "transformed")
##
## Estimated adjusted mean of the response variable in the transformed space:
##
## X mean(log(Y)) lower95% upper95%
## 1 51 -0.3909818 -0.3989978 -0.3829659
## 2 66 -0.2478318 -0.2558614 -0.2398023
```

A graphical representation of the relationship between age and IMT is available using the method plot. For instance, the two following instructions provide left and right plots in Figure 1, respectively:

```
plot(modimt, type = "transformed", observed = T, xname = "Age (years)", yname = "IMT")
plot(modimt, observed = T, xname = "Age (years)", yname = "IMT (mm)")
```

The argument observed controls whether observations are shown in the plot (default is FALSE). Further information on the usage of the method plot is available using ?tlm.

Diagnostics plot as in Figure 2 can be obtained with the following instruction:

```
plot(modimt, type = "diagnosis")
```

The function effectInfo provides information on interpreting the relationship between age (X) and IMT (Y):

```
effectInfo(modimt)
##
## The effect of X on Y can be summarized with a single number as follows:
```


Figure 1: Mean of log of IMT (left) and geometric mean (or median) of IMT (right) as a function of the age. Dashed lines represent 95% confidence intervals for the measure.

```
##
## - Change in X: additive of c units
## - Type of effect on Y: percent change in the geometric mean of Y
## - Effect size: 100 * [exp(c * beta) - 1]%
##
## beta coefficient estimate:
## Estimate Std. Error t value Pr}(>|t|
## age 0.009543334 0.0003092751 30.8571 4.531758e-180
##
## Further details can be obtained using effect().
```

Thus, we can see that, in this case, if we use additive changes in X and percent (or multiplicative) changes in the geometric mean of Y, a summary effect can be obtained, which is independent of the value of X for which the effect is computed.

The function effect provides as default the expected change in IMT for an additive change in age equal to the interquartile range:

```
effect(modimt)
##
## Computing effects...
##
```


Figure 2: Diagnostics plot for the model modimt.

```
## Adjusted percent change in the geometric mean of the response variable
## for a 'c' units additive change in the explanatory variable equivalent
## to the interquartile range:
##
```

```
##
    c Estimate lower95% upper95%
1 15 15.39029 14.3454 16.44472
##
## For further information on interpreting the effect use effectInfo().
```

Other measures of effects can be obtained. For instance, we may be interested in a difference of (geometric) means when changing age across the first quartile, the median and the third quartile:

```
q123 <- quantile(imt$age, probs = 1:3/4) # quartiles
effect(modimt, x1 = q123)
##
## Computing effects...
##
## Adjusted change in the geometric mean of the response variable when the
## explanatory variable changes from x1 to x2 (confidence interval for the
## difference change based on 999 bootstrap samples):
##
## x1 x2 EstimateDiff lower95% upper95% EstimatePercent lower95%
## 25% 51 59 0.05366274 0.05039149 0.05674395 7.933669 7.411302
## 50% 59 66 0.05043602 0.04725599 0.05377603 6.908521 6.455654
## upper95%
## 25% 8.458576
## 50% 7.363315
##
## For further information on interpreting the effect use effectInfo().
```

As in this example, when a summary effect is not computed, then both difference and percent changes in the response are computed. The number of bootstrap samples is controlled by the argument nboot whoose default value is 999 [3].

3.1.2 Log transformation in the explanatory variable

Consider now the evaluation of the association between the birth weight, in grams, Y, and the cord serum cotinine level in the mother, in $\mathrm{ng} / \mathrm{ml}, X$. Variable X was log transformed to achieve a more homogeneous distribution. The cotinine data were simulated to emulate true data patterns observed in a real study [4]. Data also contains a binary variable indicating whether the birth weight was low (defined as lower than 2500 g).

We can load and explore data (further information about data is available with the help function, ?cotinine):
data(cotinine)
dim(cotinine)
\#\# [1] 3514
head(cotinine)

```
## cotinine logcotinine weight underweight
## 2 5.1584035 1.640627 3626 no
## 5 0.2909473 -1.234613 3672 no
## 11 4.1119142 1.413889 3779 no
## 12 3.0037959 1.099877 3540 no
## 14 5.9240779 1.779025 3179 no
## 17 7.3854370 1.999510 2494 yes
summary(cotinine)
\#\# cotinine logcotinine weight underweight
## Min. : 0.200 Min. :-1.609 Min. :1656 no :327
## 1st Qu.: 3.234 1st Qu.: 1.174 1st Qu.:2920 yes: 24
## Median : 7.385 Median : 2.000 Median :3232
## Mean : 39.431 Mean : 2.353 Mean :3218
## 3rd Qu.: 39.226 3rd Qu.: 3.669 3rd Qu.:3522
## Max. :910.000 Max. : 6.813 Max. :4771
```

Suppose that we are interested in the effect of cotinine level on birth weight, under a linear regression model with log transformation in the explanatory variable, cotinine. The model can be fitted as follows:

```
modcot <- tlm(y = weight, x = logcotinine, data = cotinine, xpow = 0)
```

where xpow $=0$ indicates that the explanatory variable is already log transformed. The fitted model provides the following results:

```
summary(modcot)
##
## Linear regression fitted model in the transformed space
## -------------------------------------------------------------
##
## Transformations:
## In the explanatory variable: log
##
## Call:
## lm(formula = weight ~ logcotinine, data = cotinine)
##
## Residuals:
\begin{tabular}{lrrrrr} 
\#\# & Min & 1Q & Median & 3Q & Max \\
\#\# & -1390.64 & -280.11 & -2.95 & 300.47 & 1422.31
\end{tabular}
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3406.49 42.59 79.978 < 2e-16 ***
```

```
## logcotinine -80.00 14.95 -5.351 1.58e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 450.1 on 349 degrees of freedom
## Multiple R-squared: 0.07583,Adjusted R-squared: 0.07318
## F-statistic: 28.64 on 1 and 349 DF, p-value: 1.585e-07
```

In Figure 3 (obtained with the following instructions) we can see the fitted model (left) and the relationship between cotinine level and birth weight, under the model, in the original space of the variables (right).
plot(modcot, type = "transformed", observed = T, xname = "Cotinine", yname = "weight (kg)") plot(modcot, xname = "Cotinine (ng/ml)", yname = "weight (kg)")

Figure 3: Mean of birth weight as a function of cotinine in log scale (left) and in the natural scale (right). Dashed lines represent 95% confidence intervals for the measure.

The function effectInfo provides information on interpreting the relationship between cotinine levels (X) and weight (Y) :

```
effectInfo(modcot)
##
## The effect of X on Y can be summarized with a single number as follows:
##
## - Change in X: multiplicative of factor q (equivalently, adding an r = 100 * (q - 1)% to X)
## - Type of effect on Y: additive change in the mean of Y
## - Effect size: beta * log(q) units of Y
##
## beta coefficient estimate:
## Estimate Std. Error t value Pr
## logcotinine -80.00108 14.94986 -5.351292 1.584903e-07
##
## Further details can be obtained using effect().
```

In this case, if we use multiplicative (or percent) changes in X and additive changes in the mean of Y, a summary effect can be obtained, which is independent of the value of X for which the effect is computed. The function effect provides as default the expected change in weight for a percent change in cotinine levels equal to the interquartile ratio:

```
effect(modcot)
##
## Computing effects...
##
## Adjusted additive change in the mean of the response variable for an
## 'r'% change in the explanatory variable equivalent to the interquartile
## ratio:
##
## r Estimate lower95% upper95%
## 1 1112.878 -199.6492 -273.0272 -126.2712
##
## For further information on interpreting the effect use effectInfo().
```

Alternatively, by exploring Figure 3, we can see that several 10-fold changes occur in the population and choose the more common number $q=10$, in which case the effect is

```
effect(modcot, q = 10)
##
## Computing effects...
##
## Adjusted additive change in the mean of the response variable for an
## 'r' = 900% change in the explanatory variable:
##
## r Estimate lower95% upper95%
```

```
## 1 900 -184.2093 -251.9126 -116.506
##
## For further information on interpreting the effect use effectInfo().
```

If we are interested in explore the effect of an additive change in cotinine levels, we can obtain, for example, effects for additive changes in X along its range. For instance:

```
range(cotinine$cotinine)
## [1] 0.2 910.0
effect(modcot, x1 = 100, c = 200, npoints = 4)
##
## Computing effects...
##
## Adjusted change in the mean of the response variable when the explanatory
## variable changes from x1 to x2 (confidence interval for the percent change
## based on 999 bootstrap samples):
##
## x1 x2 EstimateDiff lower95% upper95% EstimatePercent lower95%
## 1 100 300 -87.89017 -120.19284 -55.58750 -2.8929637-4.0227274
## 2 300 500 -40.86660 -55.88649 -25.84671 -1.3852256 -1.9861551
## 3 500 700 -26.91814 -36.81149 -17.02479 -0.9252415 -1.2979132
## 4 700 900 -20.10543 -27.49486 -12.71599 -0.6975258 -0.9934569
## upper95%
## 1 -1.7692666
## 2 -0.8069561
## 3-0.5732388
## 4 -0.4388765
##
## For further information on interpreting the effect use effectInfo().
```


3.1.3 Log transformation in both the response and the explanatory variable

Consider an epidemiological study to assess the association between cat allergen levels (Fel d 1) in the bed mattress, X, and in the living room, Y, in homes of study participants, taking into account cat ownership, C. Both variables X and Y were \log transformed to achieve linearity in their relationship. The feld1 data were simulated to emulate true data patterns observed in a real study [5].

We can load and explore data (further information about data is available with the help function, ?feld1):
data(feld1)
dim(feld1)
\#\# [1] 4715

```
head(feld1)
## mattress room logmattress logroom cat
## 1 0.66504894 0.26758221 -0.4078946 -1.3183284 yes
## 2 0.02723504 0.16796992 -3.6032509 -1.7839704 no
## 3 0.16773827 0.76728932 -1.7853504 -0.2648913 no
## 4 0.01391101 0.05480368 -4.2750750 -2.9039979 no
## 5 0.04216982 0.11931900 -3.1660504 -2.1259547 yes
## 6 1.44212520 17.29388484 0.3661179 2.8503530 yes
summary(feld1)
## mattress room logmattress
## Min. : 0.0030 Min. : 0.0017 Min. :-5.7975
## 1st Qu.: 0.0636 1st Qu.: 0.1076 1st Qu.:-2.7559
## Median : 0.1773 Median : 0.3081 Median :-1.7297
## Mean : 3.1976 Mean : 27.5263 Mean :-1.5942
## 3rd Qu.: 0.5565 3rd Qu.: 1.1713 3rd Qu.:-0.5861
## Max. :467.7814 Max. :2120.4743 Max. : 6.1480
## logroom cat
## Min. :-6.3565 no :403
## 1st Qu.:-2.2295 yes: 68
## Median :-1.1774
## Mean :-0.8528
## 3rd Qu.: 0.1581
## Max. : 7.6594
```

Suppose that we are interested in the association between allergen levels in the mattress and in the living room, under a linear regression model with log transformation in both variables, adjusting for cat ownership. The model can be fitted as follows:

```
modcat <- tlm (y = logroom, x = logmattress, z = cat, data = feld1, ypow = 0, xpow = 0)
```

where ypow $=0$ and xpow $=0$ indicate that both the explanatory and the response variables are already \log transformed. The fitted model provides the following results:

```
summary(modcat)
##
## Linear regression fitted model in the transformed space
## ------------------------------------------------------------
##
## Transformations:
## In the response variable: log
## In the explanatory variable: log
##
```

```
## Call:
## lm(formula = logroom ~ logmattress + cat, data = feld1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -5.9172 -1.1228 -0.0631 0.9464 6.0440
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.05412 0.11651 -0.465 0.642
## logmattress 0.63936 0.04454 14.354 < 2e-16 ***
## catyes 1.52747 0.23098 6.613 1.03e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.68 on 468 degrees of freedom
## Multiple R-squared: 0.4192,Adjusted R-squared: 0.4167
## F-statistic: 168.9 on 2 and 468 DF, p-value: < 2.2e-16
```

We can create Figure 4 with

```
plot(modcat, type = "transformed", observed = T, xname = "Mattress levels",
    yname = "living room levels")
plot(modcat, xname = "Mattress levels", yname = "living room levels")
```

which provides a graphical representation of the relationship between allergen levels in the mattress and in the living room. Measures in Figure 4 have been obtained after averaging the expected measure of Y over all subjects in the dataset. This is equivalent to saying that measures and effects are calculated for an average individual in the population and they can be interpreted as adjusted measures and adjusted effects [6] .

The function effectInfo provides information on interpreting the relationship between allergen levels in mattress (X) and in living room (Y) :

```
effectInfo(modcat)
##
## The effect of X on Y can be summarized with a single number as follows:
##
## - Change in X: multiplicative of factor q (equivalently, adding an r = 100 * (q - 1)% to X)
## - Type of effect on Y: percent change in the geometric mean of Y
## - Effect size: 100 * (q^beta - 1)%
##
## beta coefficient estimate:
## Estimate Std. Error t value Pr}(>|t|
## logmattress 0.6393565 0.04454319 14.35363 5.610118e-39
##
## Further details can be obtained using effect().
```


Figure 4: Mean of birth weight as a function of cotinine in log scale (left) and in the natural scale (right). Dashed lines represent 95% confidence intervals for the measure.

In this case, if we use multiplicative (or percent) changes in both variables, a summary effect can be obtained, which is independent of the value of the explanatory variable for which the effect is computed.

The function effect provides as default the expected change in allergen levels in the living room for a percent change in allergen levels in mattress equal to the interquartile ratio:

```
effect(modcat)
##
## Computing effects...
##
## Adjusted percent change in the geometric mean of the response variable
## for an 'r'% change in the explanatory variable equivalent to the
## interquartile ratio:
##
## r Estimate lower95% upper95%
## 1 775.6541 300.393 231.1347 384.137
##
## For further information on interpreting the effect use effectInfo().
```

If we are interested in the effect of cat ownership on allergen levels in the living room, with log
transformation in this, we should run a new model with cat ownership as the explanatory variable:

```
modcat2 <- tlm (y = logroom, x = cat, data = feld1, ypow = 0)
modcat2
##
## Linear regression fitted model in the transformed space
## --------------------------------------------------------------
##
## Transformations:
## In the response variable: log
##
## Call:
## lm(formula = logroom ~ cat, data = feld1)
##
## Coefficients:
## (Intercept) catyes
## -1.218 2.528
```

Then, we can computed measures:

```
MY (modcat2)
##
## Estimated adjusted geometric mean of the response variable in the original space:
##
## xlevel geomMean(Y) lower95% upper95%
## 1 no 0.295888 0.2429528 0.360357
## 2 yes 3.706041 2.2935543 5.988407
```

and the effect:

```
effect(modcat2)
##
## Computing effects...
##
## Adjusted change in the geometric mean of the response variable when
## the explanatory variable changes from its reference level, 'no', to
## an alternative level (confidence interval for the difference based
## on 999 bootstrap samples):
##
## EstimateDiff lower95% upper95% EstimatePercent lower95% upper95%
## no -> yes 3.410153 1.408236 7.556697 1152.515 645.5631 2004.171
##
## For further information on interpreting the effect use effectInfo().
```

A graphical representation of the relationship can be obtained (see Figure 5):

```
plot(modcat2, yname = "room levels")
```


Figure 5: Geometric mean (and 95\% confidence intervals) of allergen levels in the living room as a function of cat ownership.

3.1.4 Power transformations

Consider now the modeling of the association between triglycerides, X, and glucose, Y, levels in blood, both measured in $\mathrm{mg} / \mathrm{dl}$. Variables X and Y were transformed under power functions $g(X)=1 / \sqrt{X}=$ $X^{-1 / 2}$ and $f(Y)=1 / Y^{2}=Y^{-2}$, respectively, to achieve linearity. The glucose data were simulated to emulate true data pattern observed in a real study [2].

First, we can load and explore data (further information about data is available with the help function, ?glucose):

```
data(glucose)
dim(glucose)
## [1] 400 4
head(glucose)
## trigly gluco inv12tri inv2glu
## 1 264 116 0.06154575 7.431629e-05
```

\#\# 2	151	123	0.08137885	$6.609822 \mathrm{e}-05$
\#\#	3	67	96	0.12216944
$1.085069 \mathrm{e}-04$				
\#\# 4	73	86	0.11704115	$1.352082 \mathrm{e}-04$
\#\#	5	180	104	0.07453560
\#\# 6	130	114	0.08770580	$7.694675 \mathrm{e}-05$

```
summary(glucose)
```

\#\#	trigly	gluco	inv12tri	inv2glu
\#\#	Min. : 33.00	Min. : 63.00	Min. 00.03875	Min. $11.457 \mathrm{e}-05$
\#\#	1st Qu.: 70.75	1st Qu.: 85.00	1st Qu.:0.08805	1st Qu.:8.573e-05
\#\#	Median : 94.50	Median : 95.00	Median :0.10287	Median :1.108e-04
\#\#	Mean :112.38	Mean : 99.13	Mean :0.10297	Mean : $1.131 \mathrm{e}-04$
\#\#	3rd Qu.:129.00	3rd Qu.:108.00	3rd Qu.:0.11889	3rd Qu.:1.384e-04
\#\#	Max. :666.00	Max. 262.00	Max. 0.17408	Max. $: 2.520 \mathrm{e}-04$

Then, we can fit and explore the model of interest:

```
modglucose <- tlm(y = inv2glu, x = inv12tri, data = glucose, ypow = -2, xpow = -1/2)
summary(modglucose)
##
## Linear regression fitted model in the transformed space
## --------------------------------------------------------------
##
## Transformations:
## In the response variable: power, exponent = -2
## In the explanatory variable: power, exponent = -1/2
##
## Call:
## lm(formula = inv2glu ~ inv12tri, data = glucose)
##
## Residuals:
## Min 1Q Median 3Q Max
## -9.831e-05 -2.282e-05 -8.110e-07 2.037e-05 1.226e-04
##
## Coefficients:
## Estimate Std. Error t value Pr}(>|t|
## (Intercept) 5.424e-05 8.409e-06 6.45 3.25e-10 ***
## inv12tri 5.715e-04 7.982e-05 7.16 3.92e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ', ' 1
##
## Residual standard error: 3.557e-05 on 398 degrees of freedom
## Multiple R-squared: 0.1141,Adjusted R-squared: 0.1119
## F-statistic: 51.27 on 1 and 398 DF, p-value: 3.915e-12
```

The function MY provides a numerical representation of the relationship between triglycerides (X) and glucose (Y), under the fitted model, in the original scale of the variables:

```
MY(modglucose)
##
## Estimated adjusted median of the response variable in the original space:
##
## X median(Y) lower95% upper95%
## 1 33.0000 80.65215 77.74929 83.90648
## 2 103.3333 95.14538 93.64405 96.72131
## 3 173.6667 101.21681 98.47839 104.19717
## 4 244.0000 104.92701 101.08180 109.24731
## 5 314.3333 107.53510 102.82668 112.95582
## 6 384.6667 109.51322 104.11239 115.85237
## 7 455.0000 111.08770 105.11481 118.21011
## 8 525.3333 112.38364 105.92678 120.18625
## 9 595.6667 113.47702 106.60300 121.87907
## 10 666.0000 114.41723 107.17821 123.35386
```

This relationship can also be represented graphically in Figure 6:

```
plot(modglucose, type = "transformed", observed = T, xname = "Triglycerides (mg/dl)",
    yname = "glucose (mg/dl)")
plot(modglucose, xname = "Triglycerides (mg/dl)", yname = "glucose (mg/dl)")
```

The function effectInfo indicates that, under the fitted model, there is no summary effect:

```
effectInfo(modglucose)
##
## The effect of X on Y cannot be summarized with a single number.
## Its behavior can be explored using effect().
```

Indeed, for general transformations it is not possible to find a summary measure that works for all values of X and its change. In such cases, we can create tables with the four possible combinations that result when considering both additive and multiplicative changes in both X and Y. These tables should report the effects for several basal values of X along the observed range [7]. For instance, the 2.5th and 97.5 th percentiles of triglycerides level were $47 \mathrm{mg} / \mathrm{dl}$ and $313 \mathrm{mg} / \mathrm{dl}$, respectively. Thus, we can report the effects between pairs of consecutive values of $X=50,100,150,200$ and $250 \mathrm{mg} / \mathrm{dl}$, that is to say, for an additive increase of $c=50 \mathrm{mg} / \mathrm{dl}$, and also between pairs of consecutive values: $50,75,112.5,168.8$ and $253.1 \mathrm{mg} / \mathrm{dl}$, that is, for an $r=50 \%$ increase:

```
# Effects for an additive change in triglycerides level:
xc <- 50 * (1:5)
xc
```


Figure 6: Relationship between glucose triglycerides levels in the transformed space (left) and in the natural scale of the variables (right). Dashed lines represent 95% confidence intervals for the measure.

```
## [1] 50 100 150 200 250
effectXdiff <- effect(modglucose, x1 = xc)
##
## Computing effects...
effectXdiff
##
## Adjusted change in the median of the response variable when the explanatory
## variable changes from x1 to x2 (confidence intervals based on 999 bootstrap
## samples):
##
## x1 x2 EstimateDiff lower95% upper95% EstimatePercent lower95%
## 1 50 100 8.703222 6.334019 10.907257 10.114803 7.250154
## 2 100 150 4.802290 3.313412 6.464551 5.068507 3.506924
## 3 150 200 3.235200 2.178028 4.439836 3.249826 2.215835
```

```
## 4 200 250 2.397980 1.602089 3.372809 2.333003 1.597478
## upper95%
## 1 12.960938
## 2 6.792880
## 3 4.370665
## 4 3.172078
# Effects for an percent change in triglycerides level:
xq<- 50 * 1.5^(0:4)
xq
## [1] 50.000 75.000 112.500 168.750 253.125
effectXperc <- effect(modglucose, x1 = xq)
##
## Computing effects...
effectXperc
##
## Adjusted change in the median of the response variable when the explanatory
## variable changes from x1 to x2 (confidence intervals based on 999 bootstrap
## samples):
##
## x1 x2 EstimateDiff lower95% upper95% EstimatePercent lower95%
## 1 50.00 75.000 5.152950 3.813373 6.363338 5.988710 4.361787
## 2 75.00 112.500 4.971764 3.542537 6.461374 年 lllllll
## 3 112.50 168.750 4.724024 3.260444 6.322945 4.912204 3.396935
## 4 168.75 253.125 4.420430 2.976703 6.163127 4.381299 3.006967
## upper95%
## 1 7.553217
## 2 7.140190
## 3 6.507858
## 4 5.941818
```

Exploring previous results, one can see that the more easily interpretable effect appears to be the additive change in the median of glucose level associated to a percent change in triglycerides level. Indeed, we can see that, for any given value of the triglycerides level along the observed range, a 50% increase in triglycerides level is associated to around a $4.8 \mathrm{mg} / \mathrm{dl}$ increase in the median glucose level. For the other measures, the effect is more dependent on the basal value of the triglycerides level.

3.2 Logistic regression model with log transformation in the explanatory variable

Revisiting the cotinine example -section 3.1.2-, supose we are now interested in the association between low birth weight -defined as weight lower than $2500 \mathrm{~g}_{-}, Y$, and cotinine level, X, after \log transforming X. The model can be fitted as follows:

```
modcot2 <- tlm(y = underweight, x = logcotinine, data = cotinine, xpow = 0, family = binomial)
```

where xpow $=0$ indicates that the explanatory variable is already \log transformed and the argument family = binomial indicates that the regression model is logistic with logit link (default is family = gaussian, for the lineal regression model). The fitted model provides the following results:

```
summary(modcot2)
##
## Logistic regression fitted model in the transformed space
## ----------------------------------------------------------------
##
## Transformations:
## In the response variable: logit link for logistic regression
## In the explanatory variable: log
##
## Call:
## glm(formula = underweight ~ logcotinine, family = binomial, data = cotinine)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.7061 -0.4186 -0.3231 -0.2821 2.6239
##
## Coefficients:
## Estimate Std. Error z value Pr}(>|z|
## (Intercept) -3.5146 0.4539 -7.744 9.65e-15 ***
## logcotinine 0.3306 0.1289 2.566 0.0103 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 175.09 on 350 degrees of freedom
## Residual deviance: 168.45 on 349 degrees of freedom
## AIC: 172.45
##
## Number of Fisher Scoring iterations: 5
```

Then, we can obtain the probability of low birth weight as a function of cotinine level:

```
MY (modcot2)
##
## Estimated adjusted probability of the response variable in the original space:
##
## X P(Y) lower95% upper95%
```

```
## 1 0.2000 0.01717866 0.004920113 0.05819342
## 2 101.2889 0.12049711 0.072138318 0.19447904
## 3 202.3778 0.14693118 0.079055696 0.25683106
## 4 303.4667 0.16452717 0.082757167 0.30061256
## 5 404.5556 0.17801453 0.085288433 0.33466844
## 6 505.6444 0.18906298 0.087213645 0.36260410
## 7 606.7333 0.19847559 0.088768165 0.38629112
## 8 707.8222 0.20670597 0.090072508 0.40684022
## 9 808.9111 0.21403755 0.091196603 0.42496992
## 10 910.0000 0.22066025 0.092184631 0.44117414
```

A graphical representation of the relationship between cotinine level and low birth weight can be obtained by:

```
plot(modcot2, type = "transformed", xname = "Cotinine (ng/ml) levels",
    yname = "low birth weight")
plot(modcot2, xname = "Cotinine (ng/ml) levels", yname = "low birth weight")
```

which provides Figure 7.

Figure 7: Log odds of low birth weight as a function of log cotinine (left) and probability of low birth weight as a function of cotinine level (right). Dashed lines represent 95% confidence intervals for the measure.

Regarding effects, the function effectInfo indicates that, under the fitted model, we can summarize the effect of cotinine level (X) on low birth weight (Y) in terms of odds ratio (OR) for a percent (or multiplicative) change in cotinine level:

```
effectInfo(modcot2)
##
## The effect of X on Y can be summarized with a single number as follows:
##
## - Change in X: multiplicative of factor q (equivalently, adding an r = 100 * (q - 1)% to X)
## - Type of effect on Y: odds ratio of Y
## - Effect size: q^beta
##
## beta coefficient estimate:
## Estimate Std. Error z value }\operatorname{Pr}(>|z|
## logcotinine 0.3306394 0.1288549 2.565982 0.01028842
##
## Further details can be obtained using effect().
```

Thus, the function effect provides as default the OR of low birth weight for a percent change in the cotinine level equal to the interquartile ratio:

```
effect(modcot2)
##
## Computing effects...
##
## Adjusted odds ratio of the response variable for an 'r'% change in
## the explanatory variable equivalent to the interquartile ratio:
##
## r Estimate lower95% upper95%
## 1 1112.878 2.282194 1.21516 4.286193
##
## For further information on interpreting the effect use effectInfo().
```

Alternatively, the effect for a 10 -fold change in the cotinine level is:

```
effect(modcot2, q = 10)
##
## Computing effects...
##
## Adjusted odds ratio of the response variable for an 'r' = 900% change
## in the explanatory variable:
##
## r Estimate lower95% upper95%
```

\#\#
\#\# For further information on interpreting the effect use effectInfo().

References

[1] Barrera-Gómez J, Basagaña X. Models with transformed variables: interpretation and software. Epidemiology. 2015;26(2):e16-17. DOI: 10.1097/EDE.0000000000000247.
[2] Rivera M, Basagaña X, Aguilera I, Foraster M, Agis D, de Groot E, Perez L, Mendez MA, Bouso L, Targa J, Ramos R, Sala J, Marrugat J, Elosua R, Künzli N. Association between long-term exposure to traffic-related air pollution and subclinical atherosclerosis: The REGICOR study. Environmental Health Perspectives 2013;121(2):223-230. DOI:10.1289/ehp. 1205146.
[3] Davison AC, Hinkley DV. Bootstrap Methods and their Application. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, New York. 1997. ISBN 9780521574716.
[4] Pichini S, Basagaña X, Pacifici R, Garcia O, Puig C, Vall O, Harris J, Zuccaro P, Segura J, Sunyer J. Cord serum cotinine as a biomarker of fetal exposure to cigarette smoke at the end of pregnancy. Environmental Health Perspectives. 2000;108(11):1079-1083.
[5] Basagaña X, Torrent M, Atkinson W, Puig C, Barnes M, Vall O, Jones M, Sunyer J, Cullinan P; AMICS study. Domestic aeroallergen levels in Barcelona and Menorca (Spain). Pediatric Allergy and Immunology. 2002;13(6):412-417.
[6] Searle SR, Speed FM, Milliken GA. Population marginal means in the linear model: An alternative to least squares means. Amer Stat. 1980;34(4):216-221.
[7] Elswick RK Jr, Schwartz PF, Welsh JA. Interpretation of the odds ratio from logistic regression after a transformation of the covariate vector. Stat Med. 1997;16(15):1695-1703.

[^0]: *jose.barrera@isglobal.org
 ${ }^{\dagger}$ xavier.basagana@isglobal.org
 ${ }^{1} R$ is a free and open source software and it is available at http://cran.r-project.org/.

