
tosca: Tools for Statistical Content Analysis

Lars Koppers, Jonas Rieger, Karin Boczek, Gerret von Nordheim

October 28, 2021

Contents
1 Introduction 2

2 Data Preprocessing 3
2.1 Read the Corpus - textmeta, readWikinews . 3
2.2 Remove Umlauts and XML/HTML Tags - removeXML removeHTML removeUmlauts 4
2.3 Identifying Duplicates - deleteAndRenameDuplicates, duplist 4
2.4 Clean Corpus - cleanTexts . 5
2.5 Generate Wordlist - makeWordlist . 5

3 Descriptive Analysis 5
3.1 Generic Functions - print, summary . 5
3.2 Visualisation of Corpus over Time - plotScot . 6
3.3 Frequency Analysis - plotFreq . 6
3.4 Write CSV Files - showTexts, showMeta . 7

4 Generating Subcorpora 7
4.1 Filter Corpus by Dates - filterDate . 8
4.2 Filter Corpus by Wordcount - filterCount . 8
4.3 Filter Corpus by Words - filterWord . 8

5 Latent Dirichlet Allocation 10
5.1 Transform Corpus - LDAprep . 10
5.2 Performing LDA - LDAgen . 10
5.3 Validation of LDA Results - intruderWords, intruderTopics 11
5.4 Clustering of Topics - clusterTopics, mergeLDA . 12
5.5 Visualisation of Topics over Time - plotTopic . 12
5.6 Visualisation of Topic Share over Time - plotArea . 12
5.7 Visualisation of Words in Topic over Time - plotTopicWord, plotWordpt 13
5.8 Visualisation of Words in Articles allocated to Topics - plotWordSub 13
5.9 Heatmap of Topics over Time including Clustering - plotHeat 14
5.10 Individual Cases Contemplation - topTexts, topicsInText 14

6 Example pipeline 15

7 Conclusion 16

1

1 Introduction
This package provides different functions to explore text corpora with topic models. The package focuses
on the visualisation and validation of content analysis. Therefore it provides some filters for preprocessing
and a wrapper for the latent Dirichlet allocation (lda) from the lda-package to include a topic model. Most
visualisations aim at the presentation of measures for corpora, subcorpora or topics from lda over time. To
use this functionality every document needs a date specification as metadata. To harmonize different text
sources we provide the S3 object textmeta.

The following table shows an overview over the functions in the package.

Function Description
Preprocessing
cleanTexts tokenization, stopwords, removal of numbers, punctuation
deleteAndRenameDuplicates deletion of duplicates, correction of not unique id’s
duplist list of different duplication types
filterCount filter texts with few words
filterDate filter texts depending on date
filterWord filter texts depending on word lists
is.duplist generic function for S3 object duplist
is.textmeta generic function for S3 object textmeta
makeWordlist wordlists and wordtables
mergeTextmeta combining corpora
readTextmeta create textmeta objects from csv files
readWiki create textmeta objects from Wikipedia
readWikinews create textmeta objects from Wikinews
removeHTML converts html entities in UTF-8
removeUmlauts converts german umlauts
removeXML remove xml (html) tags
textmeta S3 object textmeta

Topic Models
LDAgen wrapper for the lda in the lda-package
LDAprep converts a tokenized textmeta object for the lda-package
clusterTopics cluster analysis for topics
mergeLDA combining lda-topics (for cluster analysis)

Descriptive Analysis: Corpus
plotFreq plotting wordcounts over time
showMeta export of meta data in csv
showTexts export of text data in csv

Descriptive Analysis: Topics
plotArea area plot for topics over time
plotHeat heatmaps for topics over time
plotScot plotting document counts of subcorpora over time
plotTopic plotting topic counts over time
plotTopicWord plotting wordcounts/proportion in topics over time
plotWordSub plotting wordcounts/proportion in supcorpora relative to the original

corpus
plotWordpt plotting wordcounts/proportion relative to the topics
topTexts filter representative texts for topics
topicsInText visualisation of topics in a text

2

Function Description
Validation
intruderTopics intruder topics for topic validation
intruderWords intruder words for topic validation

The current version of the package can be installed with the devtools package. The data for this vignatte
can be found in the toscaData package on gitHub.
devtools::install_github("DoCMA-TU/tosca")
devtools::install_github("DoCMA-TU/toscaData")
library(tosca)

The actual version on CRAN can be installed with install.packages.
install.packages("tosca")
library(tosca)

This vignette gives an overview over the functionality of the package. For a detailed description of the
functions see the help pages.

2 Data Preprocessing
A basic functionality of the package is data preprocessing. Therefore several functions are provided for
reading text data, creating text objects, manipulating these objects and especially handling duplicates of
different forms in the text data.

2.1 Read the Corpus - textmeta, readWikinews

Read the corpus data through one of your self-implemented read-functions and create a textmeta object with
the function of the same name and the arguments text, meta and metamult. The text component should be
a list of character vectors or a list of lists of character vectors, whereas meta is a data.frame and
metamult is intended for mainly unstructured meta-information as a list. Furthermore meta must contain
the columns id, date and title. You can test whether your object meets the requirements of a textmeta
object with the function is.textmeta.

A read-function which is part of the package tosca is the function readWikinews. readWikinews reads
XML-files created by the wikinews export page: https://en.wikinews.org/wiki/Special:Export. By default
readWikinews reads all XML-files in the working directory. The function creates a textmeta object. For
this vignette we used two categories: Politics_and_conflicts and Economy_and_business. The pages were
downloaded on 2018-03-05 in a file for each category. We can use readWikinews for reading both files, if
they are in the same folder.
corpus <- readWikinews()

Another method to read both files is to read them seperately and merge them with the function mergeTextmeta.
This function should be used if you want to merge data from different sources using different read-functions.
We use the two example datasets from the package.
data(politics)
data(economy)
corpus <- mergeTextmeta(list(politics, economy))

You obtain a note about duplicated texts (texts that appear in both categories). We have to handle this
issue later. If we merge corpora with different meta-variables we can decide if all variables are used for the
merged corpora (all = TRUE, default) or only variables that appear in all corpora (all = FALSE).

3

https://en.wikinews.org/wiki/Special:Export

After reading the raw data the texts need to be preprocessed.

2.2 Remove Umlauts and XML/HTML Tags - removeXML removeHTML removeUmlauts

You can use removeXML to delete XML-tags (<...>) in character strings or a list of character vectors.
The value you receive back are either a character vector or a list, if the input was a list.
If your texts contain html entities use removeHTML. If you want to transform the entities in UTF-8 characters
you can choose between the entity-type (dec=TRUE: ø, hex=TRUE: ø or entity=TRUE: ø).
If you are unsure which type was used, we recommend to enable all entity-type (disadvantage: longer
run time). To choose which character should be replaced you can choose from all 16 ISO-8859 lists,
e.g. symbolList=c(1,15) for ISO-8859-1 (latin1) and ISO-8859-15 (latin9). If delete=TRUE all remaining
entities will be deleted. To replace german umlauts (ä ö ü ß -> ae oe ue ss) use removeUmlauts.

We remove XML-tags and HTML-entities from our Wikinews corpus. Since we have only punctuation as
HTML-entities in the Corpus we remove it completely.
corpus$text <- removeXML(corpus$text)
corpus$text <- removeHTML(corpus$text, dec=FALSE, hex=FALSE, entity=FALSE)

It is possible to apply the function to the meta component of a textmeta object as well, for example to
remove XML tags or umlauts from the title of the Wikipedia pages.
corpus$meta$title <- removeXML(corpus$meta$title)
corpus$meta$title <- removeHTML(corpus$meta$title, dec=FALSE, hex=FALSE, entity=FALSE)

After applying the function to the text component, we have removed all database relicts like XML-tags. At
this point you should deal with identifying different types of duplicates in your text data.

2.3 Identifying Duplicates - deleteAndRenameDuplicates, duplist

You should ensure unique IDs in all three components of your textmeta object. If you cannot ensure that, it
is recommended to use the function deleteAndRenameDuplicates. This function performs three actions. It
deletes “complete duplicates”, i.e. at least two entries with same ID and same information in text and in
meta. It renames so called “real duplicates” i.e. at least two entries with same ID and text, but diferrent
information in meta, and it and renames also “fake duplicates” i.e. at least two entries with same ID but
different text components. It is important to know that for technical reasons - expecting duplicates in the
names of the lists - this is the only function, which works with classic indexing, so that it assumes the same
order of articles in all three components.

Additionally you can identify text component duplicates in your corpus with the function duplist, which
creates a list of different types of duplicates. Non-unique IDs are not supported by the function, which
implies that deleteAndRenameDuplicates should be executed before.

In the given example corpus complete duplicates are only expected if pages were associated to both categories.
These duplicates are deleted.
any(duplicated(corpus$meta$id))
sum(duplicated(names(corpus$text)))
length(corpus$text) - nrow(corpus$meta)
corpus$meta <- corpus$meta[match(names(corpus$text), corpus$meta$id),]
corpus <- deleteAndRenameDuplicates(corpus)

The function deleteAndRenameDuplicates deleted 286 complete duplicates, so that duplist is applicable
to the corpus.
dups <- duplist(corpus)

There is a possibility to visualize duplicates over time by the function plotScot which is explained in section
3.2.

4

For further analysis, especially for performing the latent Dirichlet allocation, it is important that for each
duplicate only one page is considered. Therefore it is the aim to reduce the corpus, so that it contains all
pages which appear only once and a represantative page for all pages which appear twice or more frequent. In
our example we have only duplicated texts containing the empty string "" or short relicts like "__NOTOC__"
or "* * *"

2.4 Clean Corpus - cleanTexts

For further preprocessing of text corpora tosca offers the function cleanTexts. It removes punctuation,
numbers and stopwords. By default it removes english stopwords. It uses the stopword list of the function
stopwords from the tm package. For the german stopword list some additional word (different spelling)
are implemented (e.g. “dass” and “fuer”). You can control which stopwords should be removed with the
argument sw. In addition the function changes all words to lowercase and tokenizes the documents. The
result is a list of character vectors, or if paragraph is set TRUE (default) a list of lists of character
vectors. The sublists represent additional text structure like paragraphs of a document. If you commit a
textmeta object instead of a list of texts you will also receive a textmeta object back. In this case you
have to commit it to the parameter object instead of text.

The language of the example corpora is english, so that sw should be set to stopwords() from the tm package,
which includes english stopwords by default (kind = "en").
corpusClean <- cleanTexts(object = corpus)

The function cleanTexts deletes all meta entries which do not belong to one of the texts (e.g. deleted empty
texts). To create a textmeta object including this data the corresponding function is used.
textClean2 <- cleanTexts(text = corpus$text)
corpusClean2 <- textmeta(text = textClean2, meta = corpus$meta)

2.5 Generate Wordlist - makeWordlist

After cleaning the corpus with the function cleanTexts we are able to call the function makeWordlist, which
creates a table of all words that occur in a given corpus. The function table needs a high amount of RAM.
That’s a problem for very large Corpora. In makeWordlist we use the parameter k (default: 100000L) to
reduce the number of texts which are processed at once. Large values of k lead to faster calculations but
require more RAM usage.

For calculating wordlists a tokenized corpus must be used. In the given example corpusClean$text is
committed to the function accordingly.
wordtable <- makeWordlist(corpusClean$text)

3 Descriptive Analysis
After preprocessing the text data there is a typical workflow we highly reccomend as initial descriptive data
analysis of the corpus. This workflow contains the generic functions print and summary as well as the highly
adaptable functions plotScot and plotFreq. These graphical functions should be part of any initial analysis
of text data.

3.1 Generic Functions - print, summary

Some information about the (one to) three components of the textmeta object is obtained by calling the
generic function print.
print(corpus)

5

The function provides the number of pages in the corpus (7041) and adds two additional columns in meta to
the mandatory ones id, date and title. The pages are dated from 2004-11-13 till 2018-03-04.

You obtain more information, especially about counts of NAs and tables of some candidates (default:
resource and downloadDate) with the generic function summary. In addition to candidates you can commit
the argument list.names (default: names(object)) for specifying which components out of text, meta and
metamult should be analysed by the function.
summary(corpus)

Apparently there are 191 NAs in the variable date.

3.2 Visualisation of Corpus over Time - plotScot

One of the descriptive plotting functions in the package is plotScot (SubCorpusOverTime) which creates a
plot of counts or proportions of either documents or words in a (sub)corpus over time. The subcorpus is
specified by id and it is possible to set the unit to which the dates should be floored (default: "month").
The argument curves = c("exact", "smooth", "both") determine which curve(s) should be plotted. If
you select type = "words", the object which you commit should be a tokenized textmeta object. If type =
"docs" (default) you can commit untokenized textmeta object as well.

First of all the number of texts per month in the complete example corpus is plotted, as exact and smoothed
curve.
plotScot(corpusClean, curves = "both")

The black curve is the exact one and the red curve represents the smoothed values. The grafic gives a first
impression about the distribution of the texts over time. Most of the news articles where written between
2005 and 2009. If you want to identify the distribution of duplicates over the time you can use plotScot to
plot the IDs of the not duplicated texts in the corpus.
plotScot(corpus, id = dups$notDuplicatedTexts, rel = TRUE)

The plot shows that between 2006 and 2011 around 80 per cent of the corpus are not duplicated texts. Most
zeros in the plot result from no articles in the whole corpus during these time periods. It is possible to
set these values to NA by setting natozero = FALSE in plotScot. This option works if rel = TRUE and
is offered by many other functions in the package. Usually all plot functions in the package return the
data belonging to the plot as invisible output. These plot functions offer a lot more functionality, which is
described in the corresponding help functions.

3.3 Frequency Analysis - plotFreq

The other descriptive plotting function is plotFreq which performs a frequency analysis. Most of the
arguments are the same as in plotScot. The options wordlist and link = c("and", "or") are added for
specifying the words of the frequency analysis and their link within one vector. In detail wordlist could
either be a list of character vectors or a single character vector, which will be coerced to a list of
the vector’s length. Each list entry represents a set of words which all (default link = "and") or one of
them (link = "or") should appear in an article to be counted. The function uses filterWord with out =
"count" for counting, which is explained later on.

The example corpus contains Wikinews articles concerning the categories Politics_and_conflicts and Econ-
omy_and_business. Therefore some typical words out of these categories are selected to perform a frequency
analysis. As a first example the words unemployment, growth and trade were used. The function identifies
patterns.
wordsEconomy <- list("unemployment", "growth", "trade",

c("unemployment", "growth", "trade"))
plotFreq(corpusClean, wordlist = wordsEconomy, curves = "smooth",

6

ylim = c(0, 25), legend = "topright",
main = "Wordlist-filtered texts over time. link: and")

plotFreq(corpusClean, wordlist = wordsEconomy, link = "or", curves = "smooth",
ylim = c(0, 25), legend = "topright",
main = "Wordlist-filtered texts over time. link: or")

In the figures above you can see the difference between the and link and the or link. In the first figure three
curves indicate the single words. The fourth curve shows the number of texts in which all three words appear.
For most dates no texts meets this requirement. In the second figure the same three curves representing
single words are shown. The fourth curve represents all three words again, but setting link = "or". The
curve lies above the three others in every point. Due to smoothing it is possible that the line falls under one
of the single word lines. This can be avoided by choosing curves = "exact".

In another figure the counts of pages in which the words crisis, war and conflict appear, are analysed. You
can see that it is often useful to compare smoothed and exact curves to visualize the variance and a trend in
the data.
plotFreq(corpusClean, wordlist = list(c("crisis", "war", "conflict")), link = "or",

curves = "both", both.lwd = 2, legend = "topright",
main = "Wordlist-filtered texts over time. link: or")

3.4 Write CSV Files - showTexts, showMeta

There are two functions for writing information from a textmeta object in csv files implemented in the
package. Both need a textmeta object in showTexts, respectively the meta component of any-formated
textmeta object in showMeta. The default of the parameter id in showTexts are all document IDs of the
corpus as a character vector, but it is possible to commit a character matrix as well, so that each column
will be represented in a seperated csv file. In the first column of the csv file there will be the ID of each
document, in the second and third the title and the date and the fourthe column contains the text itself.

Six IDs are sampled from the whole corpus with a given seed. Since we don’t use the file parameter, the
dataset is only returned as invisible to temp. To generate a csv file file must be specified.
set.seed(123)
ids.selected <- sample(corpus$meta$id, 6)
temp <- showTexts(corpus, id = ids.selected)
temp[, c("id", "date", "title")]

We now take a look at the meta data. The default of the parameter id in showMeta are the IDs which are in the
column meta$id. You can also commit a matrix of IDs like in showTexts and you can specify which columns
of the meta component to write in the csv file by setting the argument cols (default: colnames(meta)).

Analogously to showTexts the following code example will create three files named corpus<i>meta.csv,
where i = 1, 2, 3 stands for the i-th column of the matrix of IDs.
temp <- showMeta(corpus$meta, id = matrix(ids.selected, nrow = 2),

cols = c("title", "date"))
temp

4 Generating Subcorpora
The preprocessing presented above is mandatory. For further preparation the package offers functions for
filtering the corpus by dates, wordcount or search terms to generate subcorpora. There are three implemented
ways to filter your corpora: filterDate for date filter, filterCount for wordcounts, and filterWord for
word and pattern filter.

7

4.1 Filter Corpus by Dates - filterDate

filterDate, filters a given textmeta object by a time period. The function works on any formated object of
class textmeta and extracts documents out of the text component, from which the date column in the meta
component is between s.date and e.date - including documents from both exact dates. The return value is
either the filtered textmeta object or a list, e.g. the text component of a textmeta object, if you commit
the text and the meta component not as a textmeta object.

The example corpus is filtered to articles dated between 2006 and 2009.
corpusDate <- filterDate(corpusClean, s.date = "2006-01-01", e.date = "2009-12-31")
print(corpusClean)
print(corpusDate)

The filtered corpus contains only the 3909 documents from the period 2006 till 2009.

4.2 Filter Corpus by Wordcount - filterCount

After cleaning the example corpus and restricting it to the given dates it consists of documents with the
distribution of wordcounts (including symbols) given below.
textCounts <- lengths(corpusDate$text)
quantile(textCounts, probs = c(0, 0.05, 0.1, 0.2, 0.5, 0.8, 0.9, 0.95, 1))

To exclude very short documents from your corpus. You can use the function filterCount. The func-
tion considers only words which only consist of letters and which are seperated by any word seperating
symbol like whitespace or punctuation. Tokenized documents can also be processed. The function call
filterCount(corpus, count = 5) for example deletes all documents from corpus that consist of less than
five words.
mean(textCounts != filterCount(corpusDate, out = "count"))

The counts returned by filterCount need not to match the lengths of the tokenized documents exactly,
because based on the way of preprocessing the corpus may contain symbols - which leads to smaller counts -
or multiple words in one token. These multiple words could be unaffected by tokenization in cleanTexts if
they are seperated by remaining symbols instead of whitespace and then lead to higher counts.

4.3 Filter Corpus by Words - filterWord

The use of filterWord works analogously. It filters the text component of a textmeta object by appearances
of specific words. The function uses regular expressions. It filters the given documents in the text component
by words committed by search, which could be a simple character vector or a list of data.frames. In
the case of a character vector committed the entries of the vector are linked by an or, so if any of the words
appears in one specific document, it is returned.

If you are not interested in the texts of the documents itself you can set out to control the output: By
default (out = text) you receive the filtered documents. If you commit the argument object you receive
the corresponding textmeta object. If you choose out = bin you get the corresponding logical vector of
indices, and if you choose out = count you get a matrix that contains in row i and column j how often the
j-th word of the wordlist appears in the i-th document.

Now examples are given for understanding the functionality of the function filterWord. An example for the
or-link is given by the next code example.
toyCorpus <- list(text1 = "dataset", text2 = "anything")
searchterm <- c("data", "as", "set", "anything")
filterWord(text = toyCorpus, search = searchterm, out = "bin")

8

The returned values are both TRUE. There is at least one pattern in the searchterm vector which appears at
least once in each of the strings dataset and anything.

In the case of a list of data.frames committed each data.frame is linked by an or and should contain
columns pattern, word, and count. The parameter pattern includes the search terms, the column word is
a logical variable which controls whether words (TRUE) or patterns are searched. Alternatively word can be a
character string containing the keyword left or right for left- or right-truncated search, i.e. word = right
searches for the exact pattern on the left of the word and all possible endings of the pattern. You must set
the argument count to an integer. This argument controls how often a word or pattern must appear in
a document to be returned. Rows in each data.frame are linked by an and. An example is given by the
following code.
searchframe <- data.frame(pattern = searchterm, word = FALSE, count = 1)
filterWord(text = toyCorpus, search = searchframe, out = "bin")

In the case that search is committed as data.frame, the and link is active. The function checks whether all
of the patterns appear as part of words in the two entries of texts. Therefore the function returns FALSE
twice.

For another emeplary case, we will delete the word anything from the search terms.
filterWord(text = toyCorpus, search = searchframe[1:3,], out = "bin")

By omitting the word anything from searchframe you receive a TRUE for text1 (dataset) - all three patterns
appear in it - and a FALSE for text2 (anything), because not all patterns appear in it, not even one of them.

An example with out = count to receive a count for each document and search term combination is the
following.
filterWord(text = list(text1 = c("i", "was", "here", "text"),

text2 = c("some", "text", "about", "some", "text", "and", "something", "else")),
search = c("some", "text"), out = "count")

In the case of out = count it is useful, that search is a simple character vector.

Another application of filterWord is to apply the function with word = TRUE, so that the function searches
only for single words, not for strings containing these words. This is displayed by the following example.
searchterm <- list(text1 = "land and and", text2 = c("and", "land", "and", "and"))
searchframe <- list(

data.frame(pattern = "and", word = FALSE, count = 1),
data.frame(pattern = "and", word = TRUE, count = 1))

filterWord(text = searchterm, search = searchframe, out = "count")

The function returns counts c(3, 4) for the simple pattern search and c(2, 3) for the word search, because
the word and appears once in every document of searchterm only as pattern and not as single word.

After understanding the functionality of the function, now it is used for filtering the Wikipedia corpus. The
example corpus is filtered to those pages which include the names of the categories as a pattern at least once.
It is not necessary to set ignore.case because the Wikipedia corpus was cleaned before. This step includes
that all words are lowercase now.
searchterm <- list(

data.frame(pattern = "economy", word = FALSE, count = 1),
data.frame(pattern = c("world", "economy"), word = FALSE, count = 1),
data.frame(pattern = "politics", word = FALSE, count = 1))

corpusFiltered <- filterWord(corpusDate, search = searchterm)
print(corpusDate)
print(corpusFiltered)

9

The date and word filtered corpus consists of 451 documents compared to 3909 documents in the original
corpusDate corpus.

5 Latent Dirichlet Allocation
The central analytical functionality in this package is to perform and analyse a latent Dirichlet allocation.
The package provides the function LDAgen for performing the LDA, functions for validating the LDA results
and various functions for visualizing the results in different ways, especially over time. It is possible to analyse
individual articles as well as their topic allocations. In tosca in addition a function for preparing your corpus
for performing a latent Dirichlet allocation is given. This function creates a object which can be committed
to the function you could use for a LDA.

5.1 Transform Corpus - LDAprep

The last step before performing a latent Dirichlet allocation is to create corpus data, which can be committed
to the function lda.collapsed.gibbs.sampler from the lda package or the function LDAgen from this
package, respectively. This is done by using the function LDAprep with its arguments text (text component
of a textmeta object) and vocab (character vector of vocabularies). These vocabularies are the words
which are taken into account for LDA.

You can have a look at the documentation of the lda.collapsed.gibbs.sampler for further information
about lda. The function LDAprep offers the option reduce all set to TRUE by default. The returned value is a
list in which every entry represents an article and contains a matrix with two rows. In the first row there is
the index of each word in vocab minus one (The index starts at 0), in the second row is always one and the
number of the appearances of the word is indicated by the number of columns belonging to this word. This
structure is needed by lda.collapsed.gibbs.sampler.

For the example corpus first a new wordlist must be generated based on the filtered corpus.
wordtableFiltered <- makeWordlist(corpusFiltered$text, method = "radix")

head(sort(wordtableFiltered$wordtable, decreasing = TRUE))

words5 <- wordtableFiltered$words[wordtableFiltered$wordtable > 5]
pagesLDA <- LDAprep(text = corpusFiltered$text, vocab = words5)

After receiving the words which appear at least six times in the whole filtered corpus, the function LDAprep
is applied to the example corpus with vocab = words5. The object pagesLDA will be committed to the
function which performs a latent Dirichlet allocation.

5.2 Performing LDA - LDAgen

The function that has to be applied first to the corpus prepared by LDAprep is LDAgen. The function offers
the options K (integer, default: K = 100L) to set the number of topics, vocab (character vector) for
specifying the words which are considered in the preparation of the corpus and several more e.g. number of
iterations for the burnin (default: burnin = 70) and the number of iterations for the Gibbs sampler (default:
num.iterations = 200). The result is saved in a R workspace, the first part of the results name can be
specified by setting the option folder (default: folder = file.path(tempdir(),"lda-result")). If you
want to save your data permanent, you have to change the path in an non temporary one.

In the concrete example corpus the manipulated corpus pagesLDA is used for documents, the topic number is
set to K = 10 and for reproducibility a seed is set to seed = 123. The filename consists of the folder argument
followed by the options of K, num.iterations, burnin and the seed of the LDA. The hyperparameter alpha
and eta are set to 1/K by default.
result <- LDAgen(documents = pagesLDA, K = 10L, vocab = words5, seed = 123)
load(file.path(tempdir(),"lda-result-k10i200b70s123alpha0.1eta0.1.RData"))

10

For validation of the LDA result and further analysis, the result is loaded back to the workspace.

5.3 Validation of LDA Results - intruderWords, intruderTopics

For validation of LDA results there are two functions in the package. intruderWords and intruderTopics
are extended version of the method Chang et al. (2009) present in their paper “Reading Tea Leaves: How
Humans Interpret Topic Models”. These functions expect user input, the user works like a document labeler.
The LDA result is committed by setting beta = result$topics. From the function intruderWords the
labeler gets a set of words. The number of words can be set by numOutwords (default: 5). This set represents
one topic. It includes a number of intruders (default: numIntruder = 1), which can also be zero. In general,
if the user identifies the intruder(s) correctly this is an identifier for a good topic allocation. You can set
options numTopwords (default: 30) to control how many top words of each topic are considered for this
validation. In addition it is possible to enable or disable the possibility for the user to mark nonsense topics.
By default this option is enabled (noTopic = TRUE). The true intruder can be printed to the console after
each step with printSolution = TRUE (default: FALSE).

The LDA result of the example corpus is checked by intruderWords with the number of intruders being
either 0 or 1.
set.seed(155)
intWords <- intruderWords(beta = result$topics, numIntruder = 0:1)

As an illustration the first set is shown. The word parliament does not fit into the set with the words obama,
bush, presidential and mccain. Therefore the user would type 1 and press enter. If the user wants to mark
nonsense topics he would type an x (in the summary the number of meaningful topics is shown) and 0 if he
thinks there is no intruder word. Actually will is the true intruder in the set above. As an example user
input c(1, 2, 5, 1, 4, 0, 0, 5, 1, 2) is considered.
print(intWords)

By printing the object intruderWords generated by to the console, you get information about options for the
validation strategy and a results matrix with ten rows an three columns. The rows indicate the different sets
of potential intruders. For each set the matrix contains information how many intruders are in the specific
set, how many intruders were missed by the user and how many false intruders were named. Of course the
columns missIntr und falseIntr match if numIntruder is a scalar and the user names exactly this number
of potential intruders for each set.
summary(intWords)

Applying summary to an object of type intruderWords will result in an ouput of some measures concerning the
validation. Each function call contains ten sets. You are able to continue labelling by calling intruderWords
with oldResult = intWords if your set was not finished.
intWords <- intruderWords(oldResult = intWords)

Analogously to intruderWords you can use intruderTopics for validation the other way around. This
function is used for validation of topics associated to a specific document instead of validation of words
associated to one topic. Therefore the document is displayed in another window and a sample of topics -
represented by the ten top.topic.words - is shown in the console. You should commit in text the text
component of the original untokenized corpus before manipulation by cleanTexts, so that the document
is readable. The user then names the intruder(s). There are options for different numbers of topics and
intruders as in intruderWords as well. The parameter theta should be set to result$document_expects
where result is the LDA result. An example call is given below.
intruderTopics(text = corpus$text, id = ldaID,

beta = result$topics, theta = result$document_sums)

11

5.4 Clustering of Topics - clusterTopics, mergeLDA

For analysing topic similarities it is useful to cluster the topics. The function clusterTopics implements
this. The main argument is topics and should be set to the topics element of the result object. You
could specify file, width and height (both integers) to write the resulting plot to a pdf. Other options
are topicnames for labelling the topics in the plot and method (default: "average"), which determines the
way the topics are clustered. The method statement is used for applying the distance matrix to the function
hclust. The distance matrix is computed based on the Hellinger distance and is returned in a list together
with the value of the hclust call as invisible by clusterTopics.
clustRes <- clusterTopics(ldaresult = result, xlab = "Topic", ylab = "Distance")
names(clustRes)

The same plot as above can be recreated by calling plot(clustRes$cluster). In the plot you can see the
similarities concerning the hellinger distance of the topics. For example the plot hints at a similarity between
topic 6, 3 and 5 which all contain economic terms with topic 6 focussing more on economic policy and topic 5
concentrating on international politics and trade. Topic 2 and 8 both include words on national politics with
topic 2 mentioning Australia, Ireland and the UK and topic 8 concentrating on U.S. politics. Topic 4 on war
and conflict is close to topics 2 and 8.

It is possible to merge different results of LDAs by calling mergeLDA(list(result1, result2, ...,
resultN)). The function mergeLDA binds the topics elements of the results by row and only consid-
ers words which appear in all results. As result you receive the topics matrix including all topics from the
results.

5.5 Visualisation of Topics over Time - plotTopic

As extension of the highly flexible functions plotScot and plotFreq the package tosca offers another plotting
function of the same type. The function plotTopic does something very similar to these two functions. It
plots the counts or proportion of words allocated to different topics of a LDA result over time. The result
object is committed in ldaresult, and the corresponding IDs of documents as a character vector in ldaid.
In object the function expects a strictly tokenized textmeta object. You could set select for selecting topics
by an integer vector. By default all topics are selected. Analoguously to wnames in plotFreq it is possible
to set topic names with tnames. By default the index and the most representative word (top.topic.words)
per topic are chosen as names. For further individualisation the function offers mostly the same options as
plotScot and plotFreq.

Often it is useful to choose curves = "smooth" if you do not select topics, because there is a massive
fluctuation of exact curves. However, it is important to have a look at the exact curves, because the smoothed
curves are someway manipulated by the statement smooth, so the user is tempted to optimise the smoothing
parameter for getting the curves he or she wants.
plotTopic(object = corpusFiltered, ldaresult = result, ldaID = ldaID,

rel = TRUE, curves = "smooth", smooth = 0.1, legend = "none", ylim = c(0, 0.7))

There is no difference of handing over an inflated corpus with documents which were not used for LDA. But
the corpus must contain all documents of the LDA.
plotTopic(object = corpusClean, ldaresult = result, ldaID = ldaID,

select = c(3:4, 6, 8), rel = TRUE, curves = "both", smooth = 0.1, legend = "topleft")

5.6 Visualisation of Topic Share over Time - plotArea

The function plotArea offers possibilities to create so called area visualisation of topics over time. It requires
the arguments ldaresult, ldaid and meta as introduced before. There are options select, tnames, unit
and others. Additionally you can set threshold to a numeric value between 0 and 1, as a limit that a topics
proportion has to surpass at least once to be plotted.

12

Because this seems to be interesting topics T3.economy (blue curve), T6.economic policy (green) and T8.US
politics (red) are plotted in a sediment plot. The chosen unit is "bimonth" (default is "quarter").
plotArea(ldaresult = result, ldaID = ldaID, meta = corpusFiltered$meta,

select = c(3, 6, 8), unit = "bimonth", sort = FALSE)

Examplary interpretation: The topic T3.economy increases over time, especially after the bank Lehman
Brothers declared bankruptcy in September 2008, the starting point of the global financial crisis. T8.US
politics is considerably larger during the 2008 presidential election campaign.

5.7 Visualisation of Words in Topic over Time - plotTopicWord, plotWordpt

Another visualisation of topics over time is given by plotTopicword. It displays the counts or proportions of
given topic-word combinations. If rel = TRUE the baseline for normalisation are the words counts, not the
counts of topics. Arguments which have to specified are object (corpus, textmeta object), docs (corpus
manipulated by LDAprep, the input for LDAgen) and the ldaresult with its ldaid (IDs of documents in
docs or ldaresult respectively). The function asks for docs for complexity reasons. This object was created
by LDAprep anyway. The options wordlist and select are known from other plot functions and offer a lot
of different topic word combinations which should be plotted by plotTopicword.

In the example corpus the proportion of the word economy in the topics one, three and seven is explored.
The top.topic.words of the three chosen topics are economy (T3.economy, lightgreen curve), million
(T6.economic policy, orange) and obama (T8.US politics, purple).
plotTopicWord(object = corpusFiltered, docs = pagesLDA, ldaresult = result, ldaID = ldaID,

wordlist = "economy", select = c(3, 6, 8), rel = TRUE, legend = "topleft")

The graphic shows that the word economy is associated to the topic T3.economy, lightgreen curve more often
than with T6.economic policy, orange curve and T8.US politics, purple curve.

For interpretation it is important to keep in mind the baseline, the word counts of economy. To display this
the sums of all topic-word proportions are calculated and are expected to be one for all dates which appear
at least once, otherwise zero.
tab <- plotTopicWord(corpusFiltered, pagesLDA, result, ldaID, "economy", rel = TRUE)
all(round(rowSums(tab[, -1]), 10) %in% c(1, 0))

This is confirmed by the call above. For some analysis maybe it could be interesting to take the other possible
baseline, the topic counts, into account. For such tasks there is an additional function called plotWordpt.

The function plotWordpt works analogously like its pendant plotTopicWord, but with baseline topic
sums instead of word sums. The difference between the functions plotWordpt and plotTopicWord is that
plotWordpt considers topic peaks. You will get the relative counts of the selected word(s) in the selected
topic(s). All curves sum up to one if you choose any topic and the whole vocabulary list as wordlist.
plotWordpt(object = corpusFiltered, docs = pagesLDA, ldaresult = result, ldaID = ldaID,

wordlist = "economy", select = c(3, 6, 8), rel = TRUE)

5.8 Visualisation of Words in Articles allocated to Topics - plotWordSub

To identify words which are used frequently in articles allocated to a topic one can use the function
plotWordSub. The first problem is allocation of topics. Therefore you set an absolute or relative limit how
often words of a given article are allocated to one topic. Additionally you have to specify whether one article
is allocated exactly once, maximally once or multiple times depending on the limit argument. The default is
limit = 10 and alloc = "multi", so an article is allocated to a topic if it contains at least 11 words which
are allocated to the given topic. Multiple or no allocations are possible. After allocating the articles to the
topics the function creates subcorpora using filterWord. To control the filter you have to set the search

13

argument. The counts of the subcorpora (normalized to their whole corpora) are plotted. There are many
options to personalize your plot like in the other plot functions.
searcheco <- data.frame(pattern = "economy", word = TRUE, count = 3)
plotWordSub(object = corpusFiltered, ldaresult = result, ldaID = ldaID, limit = 1/3,

select = c(3, 6, 8), search = searcheco, unit = "quarter", legend = "topright")

The plot shows subcorpora generated by the search argument above, which means articles must contain the
word economy at least three times. The corpora from which these subcorpora are generated have to contain
one third of words which are allocated to the corresponding topic (limit = 1/3).

5.9 Heatmap of Topics over Time including Clustering - plotHeat

The use case for plotHeat is given by searching for explicit peaks of coverage of some topics. Therefore the
resulting heatmap shows the deviation of the proportion of a given topic at this current time from its mean
proportion. In addition a dendrogramm is plotted on the left side of the heatmap showing similarities of
topics. The clustering is performed with hclust on the dissimilarities computed by dist.

By default the proportions are calculated on the article lengths, but it is possible to force calculation on only
the LDA vocabulary by setting object to a textmeta object only including meta information. Otherwise a
strictly tokenized textmeta object is required. The parameters ldaresult and ldaID expect a LDA result
and according IDs like in functions mentioned before. Options tnames (topic label), file (if you want to save
the plot in a pdf) and unit (default: round dates to "year") are given as well. Additionally it is possible
to specify whether the deviations should be normalised to take different topic sizes into account (default:
norm = FALSE). You can change the intervals of labeling on the x-axis by setting date_breaks. By default
(date_breaks = 1) every label is drawn. If you choose date_breaks = 5 every fifth label will be drawn.

The increase of the topic T3.economy after September 2008 was mentioned before. This should be visible in
the following heatmap as well. As compromise between clarity and interpretability unit = "quarter" is
chosen.
plotHeat(object = corpusFiltered, ldaresult = result, ldaID = ldaID, unit = "quarter")

In this figure, as expected the T3.economy topic increase is clearly identifiable. The according rectangles
are colored more and more red, starting from the first quarter of 2009. Almost all other quarters of years
concerning this topic are colored lightblue. Other remarkable quarters are for example the third and fourth
quarter of 2007, where the topic T10.Canadian politics and topic T1.stopwords have noticeable peaks. The
dendrogramm shows that the topics are not very similar to another concerning the absolute deviations of
topic proportion from the mean topic proportion per quarter. This supports the findings of clustering the
topics with clusterTopics.

5.10 Individual Cases Contemplation - topTexts, topicsInText

Sometimes it is useful to look at individual cases. Especially the documents with the highest counts or
proportion of words belonging to one topic are of interest. These documents can be extracted by topTexts.
By default (rel = TRUE) the proportion is considered. The function requires a ldaresult and the according
object ldaid. It offers options select, limit and minlength, which control how much articles per topic
(default: all topics) are returned (default: limit = 20) and articles of which minimum length (default:
minlength = 30) are taken into account. The output value is a matrix of the corresponding IDs.

In the example the top four pages from the topics T8.US politics, T3.economy and T6.economic policy are
requested.
topID <- topTexts(ldaresult = result, ldaID = ldaID, select = c(8, 3, 6), limit = 4)
dim(topID)

Obviously the corresponding matrix has four rows and three columns.

14

After identifying the top pages it is possible to have a closer look at these articles. Therefore the mentioned
function showTexts can be used. The returned value is a list with three entries with data.frames of four
rows - the different pages - and four columns each - id, title, date and text. For displaying, the fourth column
of each data.frame containing the pages content itself is removed.
topArt <- showTexts(corpusFiltered, id = topID)
lapply(topArt, function(x) x[, 1:3])

At last the function topicsInText offers the possibilty to analyse a single document’s topic allocations. The
function creates a HTML document with its words colored depending on the topic allocations of each word. It
requires arguments ldaresult and ldaID as usual. The corresponding LDAprep object should be committed
in text, and the vocabulary set as character vector in words. You will set id to the documents ID you are
interested in. It is possible to show the original text by setting originalText to the corresponding uncleaned
text component of your textmeta object. There are some more options - e.g. wordOrder - for modifying the
output individually.

The article Central banks worldwide cut interest rates with ID ID114652 from the top article list of topic
T3.economy is analysed with the function topicsInText in more detail.
topicsInText(text = pagesLDA, ldaresult = result, ldaID = ldaID,

id = topArt$T3.economy[4,1], vocab = words5, originaltext = corpus$text, wordOrder = "")

In the part of the HTML output above at first the different topics in the order of its absolute appearences
in the given document are displayed. The topics are represented by its 20 top.topic.words each and are
colored each in its own color. Words which were deleted by cleaning the corpus are colored black. This way
you are able to check plausibility of individual documents, so topicsInText can also be seen as individual
case validation.

6 Example pipeline
In this section we summarize the presented functions to a standard pipelines for datasets.

15

library(tosca)
load data
data(politics)
data(economy)
corpus <- mergeTextmeta(list(politics, economy))

Remove XML-tags and HTML-entities in title and text
corpus$text <- removeXML(corpus$text)
corpus$text <- removeHTML(corpus$text, dec=FALSE, hex=FALSE, entity=FALSE)
corpus$meta$title <- removeXML(corpus$meta$title)
corpus$meta$title <- removeHTML(corpus$meta$title, dec=FALSE, hex=FALSE, entity=FALSE)

##looking for duplicates and first summaries
corpus <- deleteAndRenameDuplicates(corpus)
dups <- duplist(corpus)
plotScot(corpus, id = dups$notDuplicatedTexts, rel = TRUE)
print(corpus)
summary(corpus)
plotScot(corpus, curves = "both")

corpus preprocessing / wordlists
corpusClean <- cleanTexts(object = corpus)
wordtable <- makeWordlist(corpusClean$text)
corpusDate <- filterDate(corpusClean, s.date = "2006-01-01", e.date = "2009-12-31")
searchterm <- list(

data.frame(pattern = "economy", word = FALSE, count = 1),
data.frame(pattern = c("world", "economy"), word = FALSE, count = 1),
data.frame(pattern = "politics", word = FALSE, count = 1))

corpusFiltered <- filterWord(corpusDate, search = searchterm)

prepare for LDA
wordtableFiltered <- makeWordlist(corpusFiltered$text, method = "radix")
words5 <- wordtableFiltered$words[wordtableFiltered$wordtable > 5]
pagesLDA <- LDAprep(text = corpusFiltered$text, vocab = words5)
LDAresult <- LDAgen(documents = pagesLDA, K = 10L, vocab = words5)

After generating the lda model further analysis depends on the specific aims of the project.

7 Conclusion
Our package tosca is an addition to the existing textmining packages on CRAN. It contains functions for a
typical pipeline used for content analysis and uses the implementation of standard preprocessing of existing
packages. Additionaly tosca provides functionality for visual exploration of corpora and topics resulting from
the latent Dirichlet allocation. tosca focusses on analysis over time, so it needs texts with a date as meta data.
The actual version of the package offers an implementation of intruder topics and intruder words (Chang
et al., 2009). For future versions a framework for effective sampling in (sub-) corpora is under preparation.
There are plans for a better connection to the frameworks of the tm and the quanteda package.

16

	Introduction
	Data Preprocessing
	Read the Corpus - ,
	Remove Umlauts and XML/HTML Tags -
	Identifying Duplicates - ,
	Clean Corpus -
	Generate Wordlist -

	Descriptive Analysis
	Generic Functions - ,
	Visualisation of Corpus over Time -
	Frequency Analysis -
	Write CSV Files - ,

	Generating Subcorpora
	Filter Corpus by Dates -
	Filter Corpus by Wordcount -
	Filter Corpus by Words -

	Latent Dirichlet Allocation
	Transform Corpus -
	Performing LDA -
	Validation of LDA Results - ,
	Clustering of Topics - ,
	Visualisation of Topics over Time -
	Visualisation of Topic Share over Time -
	Visualisation of Words in Topic over Time -
	Visualisation of Words in Articles allocated to Topics -
	Heatmap of Topics over Time including Clustering -
	Individual Cases Contemplation - ,

	Example pipeline
	Conclusion

