CRAN Package Check Results for Maintainer ‘Marc Becker <marcbecker at posteo.de>’

Last updated on 2025-12-21 11:50:38 CET.

Package ERROR NOTE OK
bbotk 4 9
farff 13
mlr3 4 1 8
mlr3batchmark 4 9
mlr3data 13
mlr3db 4 3 6
mlr3filters 4 9
mlr3fselect 4 9
mlr3hyperband 4 9
mlr3learners 4 9
mlr3mbo 4 9
mlr3measures 13
mlr3misc 13
mlr3spatial 13
mlr3tuning 5 8
mlr3tuningspaces 4 9
mlr3verse 3 10
mlr3viz 4 3 6
rush 13

Package bbotk

Current CRAN status: ERROR: 4, OK: 9

Version: 1.8.1
Check: tests
Result: ERROR Running ‘testthat.R’ [284s/375s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + test_check("bbotk") + } Loading required package: bbotk Loading required package: paradox [ FAIL 4 | WARN 0 | SKIP 53 | PASS 1160 ] ══ Skipped tests (53) ══════════════════════════════════════════════════════════ • On CRAN (52): 'test_ArchiveAsync.R:2:3', 'test_ArchiveAsync.R:61:3', 'test_ArchiveAsyncFrozen.R:2:3', 'test_ArchiveBatch.R:1:1', 'test_CallbackAsync.R:4:3', 'test_CallbackAsync.R:31:3', 'test_CallbackAsync.R:59:3', 'test_CallbackAsync.R:88:3', 'test_CallbackAsync.R:118:3', 'test_CallbackAsync.R:154:3', 'test_CallbackAsync.R:183:3', 'test_CallbackAsync.R:210:3', 'test_CallbackAsync.R:239:3', 'test_CallbackAsync.R:269:3', 'test_CallbackAsync.R:297:3', 'test_Objective.R:1:1', 'test_OptimInstanceAsyncSingleCrit.R:2:3', 'test_OptimInstanceAsyncSingleCrit.R:26:3', 'test_OptimInstanceAsyncSingleCrit.R:45:3', 'test_OptimInstanceAsyncSingleCrit.R:65:3', 'test_OptimInstanceAsyncSingleCrit.R:82:3', 'test_OptimInstanceAsyncSingleCrit.R:109:3', 'test_OptimInstanceBatchMultiCrit.R:1:1', 'test_OptimInstanceBatchSingleCrit.R:1:1', 'test_OptimizerAsynDesignPoints.R:2:3', 'test_OptimizerAsynGridSearch.R:2:3', 'test_OptimizerAsync.R:2:3', 'test_OptimizerAsync.R:26:3', 'test_OptimizerAsync.R:50:3', 'test_OptimizerAsync.R:73:3', 'test_OptimizerAsync.R:95:3', 'test_OptimizerAsync.R:124:3', 'test_OptimizerAsync.R:155:3', 'test_OptimizerAsync.R:178:3', 'test_OptimizerAsyncRandomSearch.R:2:3', 'test_OptimizerBatchCmaes.R:1:1', 'test_OptimizerBatchDesignPoints.R:1:1', 'test_OptimizerBatchFocusSearch.R:1:1', 'test_OptimizerBatchGenSA.R:1:1', 'test_OptimizerBatchGridSearch.R:1:1', 'test_OptimizerBatchNLoptr.R:1:1', 'test_OptimizerBatchRandomSearch.R:1:1', 'test_TerminatorClockTime.R:1:1', 'test_TerminatorCombo.R:1:1', 'test_TerminatorEvals.R:1:1', 'test_TerminatorNone.R:1:1', 'test_TerminatorPerfReached.R:1:1', 'test_TerminatorRunTime.R:2:5', 'test_TerminatorStagnation.R:1:1', 'test_TerminatorStagnationBatch.R:1:1', 'test_TerminatorStagnationBatch.R:15:1', 'test_mlr_callbacks.R:58:3' • TRUE is TRUE (1): 'test_mlr_callbacks.R:19:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_OptimizerBatchIrace.R:23:3'): OptimizerBatchIrace minimize works ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:23:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:63:3'): OptimizerBatchIrace maximize works ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:63:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:129:3'): OptimizerBatchIrace works with passed constants set ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:129:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:154:3'): OptimizerBatchIrace works without passed constants set ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:154:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) [ FAIL 4 | WARN 0 | SKIP 53 | PASS 1160 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.8.1
Check: tests
Result: ERROR Running ‘testthat.R’ [191s/214s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + test_check("bbotk") + } Loading required package: bbotk Loading required package: paradox [ FAIL 4 | WARN 0 | SKIP 53 | PASS 1160 ] ══ Skipped tests (53) ══════════════════════════════════════════════════════════ • On CRAN (52): 'test_ArchiveAsync.R:2:3', 'test_ArchiveAsync.R:61:3', 'test_ArchiveAsyncFrozen.R:2:3', 'test_ArchiveBatch.R:1:1', 'test_CallbackAsync.R:4:3', 'test_CallbackAsync.R:31:3', 'test_CallbackAsync.R:59:3', 'test_CallbackAsync.R:88:3', 'test_CallbackAsync.R:118:3', 'test_CallbackAsync.R:154:3', 'test_CallbackAsync.R:183:3', 'test_CallbackAsync.R:210:3', 'test_CallbackAsync.R:239:3', 'test_CallbackAsync.R:269:3', 'test_CallbackAsync.R:297:3', 'test_Objective.R:1:1', 'test_OptimInstanceAsyncSingleCrit.R:2:3', 'test_OptimInstanceAsyncSingleCrit.R:26:3', 'test_OptimInstanceAsyncSingleCrit.R:45:3', 'test_OptimInstanceAsyncSingleCrit.R:65:3', 'test_OptimInstanceAsyncSingleCrit.R:82:3', 'test_OptimInstanceAsyncSingleCrit.R:109:3', 'test_OptimInstanceBatchMultiCrit.R:1:1', 'test_OptimInstanceBatchSingleCrit.R:1:1', 'test_OptimizerAsynDesignPoints.R:2:3', 'test_OptimizerAsynGridSearch.R:2:3', 'test_OptimizerAsync.R:2:3', 'test_OptimizerAsync.R:26:3', 'test_OptimizerAsync.R:50:3', 'test_OptimizerAsync.R:73:3', 'test_OptimizerAsync.R:95:3', 'test_OptimizerAsync.R:124:3', 'test_OptimizerAsync.R:155:3', 'test_OptimizerAsync.R:178:3', 'test_OptimizerAsyncRandomSearch.R:2:3', 'test_OptimizerBatchCmaes.R:1:1', 'test_OptimizerBatchDesignPoints.R:1:1', 'test_OptimizerBatchFocusSearch.R:1:1', 'test_OptimizerBatchGenSA.R:1:1', 'test_OptimizerBatchGridSearch.R:1:1', 'test_OptimizerBatchNLoptr.R:1:1', 'test_OptimizerBatchRandomSearch.R:1:1', 'test_TerminatorClockTime.R:1:1', 'test_TerminatorCombo.R:1:1', 'test_TerminatorEvals.R:1:1', 'test_TerminatorNone.R:1:1', 'test_TerminatorPerfReached.R:1:1', 'test_TerminatorRunTime.R:2:5', 'test_TerminatorStagnation.R:1:1', 'test_TerminatorStagnationBatch.R:1:1', 'test_TerminatorStagnationBatch.R:15:1', 'test_mlr_callbacks.R:58:3' • TRUE is TRUE (1): 'test_mlr_callbacks.R:19:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_OptimizerBatchIrace.R:23:3'): OptimizerBatchIrace minimize works ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:23:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:63:3'): OptimizerBatchIrace maximize works ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:63:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:129:3'): OptimizerBatchIrace works with passed constants set ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:129:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:154:3'): OptimizerBatchIrace works without passed constants set ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:154:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) [ FAIL 4 | WARN 0 | SKIP 53 | PASS 1160 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.8.1
Check: tests
Result: ERROR Running ‘testthat.R’ [253s/260s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + test_check("bbotk") + } Loading required package: bbotk Loading required package: paradox [ FAIL 4 | WARN 0 | SKIP 53 | PASS 1160 ] ══ Skipped tests (53) ══════════════════════════════════════════════════════════ • On CRAN (52): 'test_ArchiveAsync.R:2:3', 'test_ArchiveAsync.R:61:3', 'test_ArchiveAsyncFrozen.R:2:3', 'test_ArchiveBatch.R:1:1', 'test_CallbackAsync.R:4:3', 'test_CallbackAsync.R:31:3', 'test_CallbackAsync.R:59:3', 'test_CallbackAsync.R:88:3', 'test_CallbackAsync.R:118:3', 'test_CallbackAsync.R:154:3', 'test_CallbackAsync.R:183:3', 'test_CallbackAsync.R:210:3', 'test_CallbackAsync.R:239:3', 'test_CallbackAsync.R:269:3', 'test_CallbackAsync.R:297:3', 'test_Objective.R:1:1', 'test_OptimInstanceAsyncSingleCrit.R:2:3', 'test_OptimInstanceAsyncSingleCrit.R:26:3', 'test_OptimInstanceAsyncSingleCrit.R:45:3', 'test_OptimInstanceAsyncSingleCrit.R:65:3', 'test_OptimInstanceAsyncSingleCrit.R:82:3', 'test_OptimInstanceAsyncSingleCrit.R:109:3', 'test_OptimInstanceBatchMultiCrit.R:1:1', 'test_OptimInstanceBatchSingleCrit.R:1:1', 'test_OptimizerAsynDesignPoints.R:2:3', 'test_OptimizerAsynGridSearch.R:2:3', 'test_OptimizerAsync.R:2:3', 'test_OptimizerAsync.R:26:3', 'test_OptimizerAsync.R:50:3', 'test_OptimizerAsync.R:73:3', 'test_OptimizerAsync.R:95:3', 'test_OptimizerAsync.R:124:3', 'test_OptimizerAsync.R:155:3', 'test_OptimizerAsync.R:178:3', 'test_OptimizerAsyncRandomSearch.R:2:3', 'test_OptimizerBatchCmaes.R:1:1', 'test_OptimizerBatchDesignPoints.R:1:1', 'test_OptimizerBatchFocusSearch.R:1:1', 'test_OptimizerBatchGenSA.R:1:1', 'test_OptimizerBatchGridSearch.R:1:1', 'test_OptimizerBatchNLoptr.R:1:1', 'test_OptimizerBatchRandomSearch.R:1:1', 'test_TerminatorClockTime.R:1:1', 'test_TerminatorCombo.R:1:1', 'test_TerminatorEvals.R:1:1', 'test_TerminatorNone.R:1:1', 'test_TerminatorPerfReached.R:1:1', 'test_TerminatorRunTime.R:2:5', 'test_TerminatorStagnation.R:1:1', 'test_TerminatorStagnationBatch.R:1:1', 'test_TerminatorStagnationBatch.R:15:1', 'test_mlr_callbacks.R:58:3' • TRUE is TRUE (1): 'test_mlr_callbacks.R:19:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_OptimizerBatchIrace.R:23:3'): OptimizerBatchIrace minimize works ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:23:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:63:3'): OptimizerBatchIrace maximize works ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:63:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:129:3'): OptimizerBatchIrace works with passed constants set ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:129:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:154:3'): OptimizerBatchIrace works without passed constants set ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:154:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) [ FAIL 4 | WARN 0 | SKIP 53 | PASS 1160 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.8.1
Check: tests
Result: ERROR Running ‘testthat.R’ [269s/277s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + test_check("bbotk") + } Loading required package: bbotk Loading required package: paradox [ FAIL 4 | WARN 0 | SKIP 53 | PASS 1160 ] ══ Skipped tests (53) ══════════════════════════════════════════════════════════ • On CRAN (52): 'test_ArchiveAsync.R:2:3', 'test_ArchiveAsync.R:61:3', 'test_ArchiveAsyncFrozen.R:2:3', 'test_ArchiveBatch.R:1:1', 'test_CallbackAsync.R:4:3', 'test_CallbackAsync.R:31:3', 'test_CallbackAsync.R:59:3', 'test_CallbackAsync.R:88:3', 'test_CallbackAsync.R:118:3', 'test_CallbackAsync.R:154:3', 'test_CallbackAsync.R:183:3', 'test_CallbackAsync.R:210:3', 'test_CallbackAsync.R:239:3', 'test_CallbackAsync.R:269:3', 'test_CallbackAsync.R:297:3', 'test_Objective.R:1:1', 'test_OptimInstanceAsyncSingleCrit.R:2:3', 'test_OptimInstanceAsyncSingleCrit.R:26:3', 'test_OptimInstanceAsyncSingleCrit.R:45:3', 'test_OptimInstanceAsyncSingleCrit.R:65:3', 'test_OptimInstanceAsyncSingleCrit.R:82:3', 'test_OptimInstanceAsyncSingleCrit.R:109:3', 'test_OptimInstanceBatchMultiCrit.R:1:1', 'test_OptimInstanceBatchSingleCrit.R:1:1', 'test_OptimizerAsynDesignPoints.R:2:3', 'test_OptimizerAsynGridSearch.R:2:3', 'test_OptimizerAsync.R:2:3', 'test_OptimizerAsync.R:26:3', 'test_OptimizerAsync.R:50:3', 'test_OptimizerAsync.R:73:3', 'test_OptimizerAsync.R:95:3', 'test_OptimizerAsync.R:124:3', 'test_OptimizerAsync.R:155:3', 'test_OptimizerAsync.R:178:3', 'test_OptimizerAsyncRandomSearch.R:2:3', 'test_OptimizerBatchCmaes.R:1:1', 'test_OptimizerBatchDesignPoints.R:1:1', 'test_OptimizerBatchFocusSearch.R:1:1', 'test_OptimizerBatchGenSA.R:1:1', 'test_OptimizerBatchGridSearch.R:1:1', 'test_OptimizerBatchNLoptr.R:1:1', 'test_OptimizerBatchRandomSearch.R:1:1', 'test_TerminatorClockTime.R:1:1', 'test_TerminatorCombo.R:1:1', 'test_TerminatorEvals.R:1:1', 'test_TerminatorNone.R:1:1', 'test_TerminatorPerfReached.R:1:1', 'test_TerminatorRunTime.R:2:5', 'test_TerminatorStagnation.R:1:1', 'test_TerminatorStagnationBatch.R:1:1', 'test_TerminatorStagnationBatch.R:15:1', 'test_mlr_callbacks.R:58:3' • TRUE is TRUE (1): 'test_mlr_callbacks.R:19:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_OptimizerBatchIrace.R:23:3'): OptimizerBatchIrace minimize works ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:23:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:63:3'): OptimizerBatchIrace maximize works ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:63:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:129:3'): OptimizerBatchIrace works with passed constants set ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:129:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) ── Error ('test_OptimizerBatchIrace.R:154:3'): OptimizerBatchIrace works without passed constants set ── Error in ``[.data.table`(log, , `:=`("step", rleid("instance")), by = "iteration")`: attempt access index 5/5 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(optimizer$optimize(instance)) at test_OptimizerBatchIrace.R:154:3 2. │ └─base::withVisible(...elt(i)) 3. └─optimizer$optimize(instance) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 12. ├─log[, `:=`("step", rleid("instance")), by = "iteration"] 13. └─data.table:::`[.data.table`(...) [ FAIL 4 | WARN 0 | SKIP 53 | PASS 1160 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package farff

Current CRAN status: OK: 13

Package mlr3

Current CRAN status: ERROR: 4, NOTE: 1, OK: 8

Version: 1.3.0
Check: examples
Result: ERROR Running examples in ‘mlr3-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: BenchmarkResult > ### Title: Container for Benchmarking Results > ### Aliases: BenchmarkResult > > ### ** Examples > > set.seed(123) > learners = list( + lrn("classif.featureless", predict_type = "prob"), + lrn("classif.rpart", predict_type = "prob") + ) > > design = benchmark_grid( + tasks = list(tsk("sonar"), tsk("penguins")), + learners = learners, + resamplings = rsmp("cv", folds = 3) + ) > print(design) task learner resampling <char> <char> <char> 1: sonar classif.featureless cv 2: sonar classif.rpart cv 3: penguins classif.featureless cv 4: penguins classif.rpart cv > > bmr = benchmark(design) INFO [04:34:53.818] [mlr3] Running benchmark with 12 resampling iterations INFO [04:34:54.018] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [04:34:54.088] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [04:34:54.167] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [04:34:54.198] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [04:34:54.261] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [04:34:54.309] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [04:34:54.360] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 1/3) INFO [04:34:54.464] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 2/3) INFO [04:34:54.491] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 3/3) INFO [04:34:54.519] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 1/3) INFO [04:34:54.555] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 2/3) INFO [04:34:54.590] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 3/3) INFO [04:34:54.633] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.3.0
Check: tests
Result: ERROR Running ‘testthat.R’ [211s/227s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + test_check("mlr3") + } Saving _problems/test_CallbackResample-20.R Saving _problems/test_CallbackResample-39.R Saving _problems/test_CallbackResample-58.R Saving _problems/test_CallbackResample-77.R Saving _problems/test_CallbackResample-94.R Saving _problems/test_CallbackResample-127.R Saving _problems/test_CallbackResample-162.R Saving _problems/test_CallbackResample-184.R Saving _problems/test_CallbackResample-225.R Saving _problems/test_CallbackResample-244.R Saving _problems/test_Learner-197.R Saving _problems/test_Learner-479.R Saving _problems/test_Learner-562.R <Mlr3TestError: x a > Class: Mlr3TestError > <Mlr3ErrorLearnerNoModel: x No model stored > Class: Mlr3ErrorLearnerNoModel > Saving _problems/test_Learner-1021.R Saving _problems/test_Measure-21.R Saving _problems/test_Measure-66.R Saving _problems/test_Measure-90.R Saving _problems/test_Measure-106.R Saving _problems/test_Measure-122.R Saving _problems/test_Measure-199.R Saving _problems/test_Measure-285.R Saving _problems/test_Measure-306.R Saving _problems/test_MeasureInternalValidScore-5.R Saving _problems/test_MeasureRegrRSQ-112.R Saving _problems/test_MeasureRegrRSQ-183.R Saving _problems/test_PredictionClassif-119.R Saving _problems/test_PredictionRegr-22.R Saving _problems/test_PredictionRegr-44.R Saving _problems/test_Task-874.R Saving _problems/test_Task-1031.R Saving _problems/test_autotest-60.R Saving _problems/test_autotest-162.R Saving _problems/test_benchmark-6.R Saving _problems/test_encapsulate-49.R Saving _problems/test_encapsulate-87.R Saving _problems/test_errorhandling-63.R Saving _problems/test_errorhandling-80.R Saving _problems/test_fallback-48.R Saving _problems/test_fallback-65.R Saving _problems/test_hotstart-134.R Saving _problems/test_hotstart-158.R Saving _problems/test_hotstart-187.R Saving _problems/test_hotstart-222.R Saving _problems/test_hotstart-246.R Saving _problems/test_install_pkgs-25.R Saving _problems/test_lgr-20.R Saving _problems/test_mlr_callbacks-9.R Saving _problems/test_mlr_callbacks-30.R Saving _problems/test_mlr_learners_classif_debug-28.R Saving _problems/test_mlr_learners_classif_featureless-4.R Saving _problems/test_mlr_learners_classif_featureless-43.R Saving _problems/test_mlr_learners_classif_rpart-4.R Saving _problems/test_mlr_learners_regr_featureless-4.R Saving _problems/test_mlr_learners_regr_featureless-11.R Saving _problems/test_mlr_learners_regr_rpart-4.R Saving _problems/test_mlr_measures-31.R Saving _problems/test_mlr_measures_selected_features-6.R Saving _problems/test_mlr_measures_similarity-3.R Saving _problems/test_mlr_reflections-60.R Saving _problems/test_mlr_reflections-76.R Saving _problems/test_mlr_reflections-105.R Saving _problems/test_mlr_resampling_holdout-39.R Saving _problems/test_parallel_future-12.R Saving _problems/test_parallel_future-25.R Saving _problems/test_parallel_future-42.R Saving _problems/test_parallel_future-69.R Saving _problems/test_parallel_future-82.R Saving _problems/test_parallel_mirai-7.R Saving _problems/test_parallel_mirai-18.R Saving _problems/test_parallel_mirai-30.R Saving _problems/test_parallel_mirai-99.R Saving _problems/test_resample-4.R Saving _problems/test_resultdata-9.R Saving _problems/test_resultdata-58.R Saving _problems/test_resultdata-93.R Saving _problems/test_resultdata-131.R Saving _problems/test_resultdata-190.R [ FAIL 79 | WARN 0 | SKIP 12 | PASS 8474 ] ══ Skipped tests (12) ══════════════════════════════════════════════════════════ • Not on GitHub Actions (1): 'test_backward_compatibility.R:1:1' • On CRAN (9): 'test_Learner.R:641:3', 'test_Learner.R:847:3', 'test_Learner.R:870:3', 'test_Learner.R:893:3', 'test_Learner.R:916:3', 'test_Measure.R:129:3', 'test_parallel_future.R:91:3', 'test_parallel_mirai.R:48:3', 'test_parallel_mirai.R:66:3' • empty test (1): 'test_Task.R:911:1' • {distr6} is not installed (1): 'test_PredictionRegr.R:54:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_CallbackResample.R:20:3'): on_resample_begin works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:20:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:39:3'): on_resample_before_train works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:39:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:58:3'): on_resample_before_predict works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:58:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:77:3'): on_resample_end works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:77:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:94:3'): writing to learner$state works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:94:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:127:3'): writing to data_extra works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:127:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:162:3'): data_extra is a list column ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:162:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:184:3'): data_extra is null ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:184:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:225:3'): learner cloning in workhorse is passed to context ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:225:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:244:3'): returning data_extra sometimes works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, callbacks = callback) at test_CallbackResample.R:244:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Learner.R:197:3'): predict train + test set ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, hout) at test_Learner.R:197:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Failure ('test_Learner.R:479:3'): internal_valid_task is created correctly ── Expected `resample(task2, learner2, resampling)` not to throw any errors. Actually got a <simpleError> with message: attempt access index 9/9 in VECTOR_ELT ── Error ('test_Learner.R:562:3'): learner state contains internal valid task information ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Learner.R:562:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Learner.R:1021:3'): oob_error is available without storing models via $.extract_oob_error() ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_Learner.R:1021:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:21:5'): average with micro/macro ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_Measure.R:19:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rs) at test_Measure.R:21:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:66:3'): check_prerequisites / task_properties ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:66:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:90:3'): check_prerequisites / predict_type ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:90:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:106:3'): check_prerequisites / predict_sets ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:106:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:122:3'): time_train works with different predict type (#832) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(...) at test_Measure.R:122:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:199:3'): measure weights ───────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, resampling) at test_Measure.R:199:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:285:3'): primary iters are respected ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_Measure.R:285:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:306:3'): no predict_sets required (#1094) ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(...) at test_Measure.R:306:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureInternalValidScore.R:5:3'): internal valid score ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_MeasureInternalValidScore.R:5:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureRegrRSQ.R:112:3'): MeasureRegrRSQ works with weights during resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_MeasureRegrRSQ.R:112:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureRegrRSQ.R:183:3'): MeasureRegrRSQ use_weights works ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task_plain, learner, resampling) at test_MeasureRegrRSQ.R:183:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionClassif.R:119:3'): c ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionClassif.R:119:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionRegr.R:22:3'): c ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionRegr.R:22:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionRegr.R:44:3'): c drops se (#250) ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionRegr.R:44:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Task.R:874:3'): $characteristics works ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_Task.R:874:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Task.R:1031:3'): weights_measure + stratum works during resampling (#1405) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(...) at test_Task.R:1031:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, lrn("classif.featureless"), rsmp("cv", folds = 3)) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_autotest.R:60:3'): autotest configure_learner works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, 10, exclude = exclude, configure_learner = cfg_lrn) at test_autotest.R:60:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_autotest.R:162:7'): autotest on encapsulation ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_autotest.R:160:5 2. │ └─base::force(expr) 3. └─global run_experiment(task, learner1) at test_autotest.R:162:7 4. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_benchmark.R:6:1'): (code run outside of `test_that()`) ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_benchmark.R:6:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_encapsulate.R:49:3'): evaluate / resample ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_encapsulate.R:49:3 2. │ └─base::withCallingHandlers(...) 3. ├─base::suppressWarnings(...) 4. │ └─base::withCallingHandlers(...) 5. └─mlr3::resample(task, disable_encapsulation(learner), resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_encapsulate.R:87:3'): encapsulate methods produce the same results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_encapsulate.R:87:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_errorhandling.R:63:3'): encapsulation / resample ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_errorhandling.R:63:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_errorhandling.R:80:3'): encapsulation / benchmark ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_errorhandling.R:80:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_fallback.R:48:3'): fail during resample ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("cv", folds = 3)) at test_fallback.R:48:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_fallback.R:65:3'): incomplete predictions ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("cv", folds = 3)) at test_fallback.R:65:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:134:3'): learners are hotstarted when resample is used ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner_1, resampling, store_models = TRUE) at test_hotstart.R:134:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:158:3'): learners are hotstarted when benchmark is called ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE) at test_hotstart.R:158:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:187:3'): learners are trained and hotstarted when benchmark is called ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE) at test_hotstart.R:187:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:222:3'): learners are cloned when hotstarting is applied ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE, allow_hotstart = TRUE) at test_hotstart.R:222:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:246:3'): hotstarting works when col role is set in task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner_1, resampling, store_models = TRUE) at test_hotstart.R:246:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_install_pkgs.R:25:3'): extract_pkgs works ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("mtcars"), lrn("regr.featureless"), rsmp("holdout")) at test_install_pkgs.R:25:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:20:3'): log to text file ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressWarnings(resample(task, learner, resampling)) at test_lgr.R:20:3 2. │ └─base::withCallingHandlers(...) 3. └─mlr3::resample(task, learner, resampling) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:38:3'): logger works ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::capture_output(...) at test_lgr.R:38:3 2. │ └─testthat::capture_output_lines(code, print, width = width) 3. │ └─testthat:::eval_with_output(code, print = print, width = width) 4. │ ├─withr::with_output_sink(path, withVisible(code)) 5. │ │ └─base::force(code) 6. │ └─base::withVisible(code) 7. └─mlr3::resample(...) 8. └─ResultData$new(data, data_extra, store_backends = store_backends) 9. └─mlr3 (local) initialize(...) 10. └─mlr3:::.__ResultData__initialize(...) 11. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 12. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:70:5'): thresholds are restored on workers ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::capture_output(...) at test_lgr.R:69:3 2. │ └─testthat::capture_output_lines(code, print, width = width) 3. │ └─testthat:::eval_with_output(code, print = print, width = width) 4. │ ├─withr::with_output_sink(path, withVisible(code)) 5. │ │ └─base::force(code) 6. │ └─base::withVisible(code) 7. ├─global with_future(...) 8. │ └─base::force(expr) 9. └─mlr3::resample(...) at test_lgr.R:70:5 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:9:3'): model extractor works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling = resampling, callbacks = callback) at test_mlr_callbacks.R:9:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:30:3'): holdout task works ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling = resampling, callbacks = callback) at test_mlr_callbacks.R:30:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_debug.R:28:3'): updating model works / resample ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("holdout"), store_models = TRUE) at test_mlr_learners_classif_debug.R:28:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_featureless.R:4:3'): autotest ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "sanity") at test_mlr_learners_classif_featureless.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_featureless.R:43:3'): classif.featureless works on featureless task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_mlr_learners_classif_featureless.R:43:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_rpart.R:4:3'): autotest ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_mlr_learners_classif_rpart.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_featureless.R:4:3'): autotest ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "sanity") at test_mlr_learners_regr_featureless.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_featureless.R:11:3'): regr.featureless works on featureless task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_mlr_learners_regr_featureless.R:11:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_rpart.R:4:3'): autotest ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_mlr_learners_regr_rpart.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures.R:31:3'): custom aggregation ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_mlr_measures.R:31:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures_selected_features.R:6:3'): selected_features ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("holdout"), store_models = TRUE) at test_mlr_measures_selected_features.R:6:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures_similarity.R:3:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_mlr_measures_similarity.R:3:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:60:3'): resampling works ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_mlr_reflections.R:60:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:76:3'): benchmark works ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid) at test_mlr_reflections.R:76:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:105:5'): external packages can set column roles ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_mlr_reflections.R:104:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, lrn("classif.rpart"), rsmp("cv", folds = 3)) at test_mlr_reflections.R:105:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_resampling_holdout.R:39:3'): prediction does not drop dimension (#551) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_mlr_resampling_holdout.R:39:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:12:7'): parallel resample ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:7:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:11:5 4. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_future.R:12:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:25:3'): seeds work identical during sequential and parallel execution ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_parallel_future.R:25:3 2. │ └─base::force(expr) 3. ├─global with_future(future::sequential, resample(task, learner, resampling)) 4. │ └─base::force(expr) 5. └─mlr3::resample(task, learner, resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:42:7'): parallel benchmark ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:40:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:41:5 4. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_parallel_future.R:42:7 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:69:7'): real parallel resample ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:64:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:68:5 4. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_future.R:69:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:82:3'): parallel seed ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(123, resample(task, learner, rsmp("cv", folds = 3))) at test_parallel_future.R:82:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:7:5'): parallel resample ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:4:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_mirai.R:7:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:18:5'): parallel benchmark ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:17:3 2. │ └─base::force(expr) 3. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_parallel_mirai.R:18:5 4. └─ResultData$new(grid, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:30:5'): mirai resample is reproducible ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:26:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) at test_parallel_mirai.R:30:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:99:5'): mirai compute profile can be changed ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:94:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) at test_parallel_mirai.R:99:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_resample.R:4:1'): (code run outside of `test_that()`) ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_resample.R:4:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:9:3'): results are ordered ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_resultdata.R:9:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:58:3'): mlr3tuning use case ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(...) at test_resultdata.R:58:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:93:3'): predict set selection ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_resultdata.R:93:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:131:3'): data_extra works ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::as_result_data(...) at test_resultdata.R:131:3 2. └─ResultData$new(...) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:190:3'): combine with data_extra works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::as_result_data(...) at test_resultdata.R:190:3 2. └─ResultData$new(...) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) [ FAIL 79 | WARN 0 | SKIP 12 | PASS 8474 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.3.0
Check: examples
Result: ERROR Running examples in ‘mlr3-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: BenchmarkResult > ### Title: Container for Benchmarking Results > ### Aliases: BenchmarkResult > > ### ** Examples > > set.seed(123) > learners = list( + lrn("classif.featureless", predict_type = "prob"), + lrn("classif.rpart", predict_type = "prob") + ) > > design = benchmark_grid( + tasks = list(tsk("sonar"), tsk("penguins")), + learners = learners, + resamplings = rsmp("cv", folds = 3) + ) > print(design) task learner resampling <char> <char> <char> 1: sonar classif.featureless cv 2: sonar classif.rpart cv 3: penguins classif.featureless cv 4: penguins classif.rpart cv > > bmr = benchmark(design) INFO [17:18:41.943] [mlr3] Running benchmark with 12 resampling iterations INFO [17:18:42.067] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [17:18:42.123] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [17:18:42.159] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [17:18:42.192] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [17:18:42.239] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [17:18:42.278] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [17:18:42.320] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 1/3) INFO [17:18:42.400] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 2/3) INFO [17:18:42.484] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 3/3) INFO [17:18:42.560] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 1/3) INFO [17:18:42.586] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 2/3) INFO [17:18:42.612] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 3/3) INFO [17:18:42.645] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.3.0
Check: tests
Result: ERROR Running ‘testthat.R’ [130s/179s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + test_check("mlr3") + } Saving _problems/test_CallbackResample-20.R Saving _problems/test_CallbackResample-39.R Saving _problems/test_CallbackResample-58.R Saving _problems/test_CallbackResample-77.R Saving _problems/test_CallbackResample-94.R Saving _problems/test_CallbackResample-127.R Saving _problems/test_CallbackResample-162.R Saving _problems/test_CallbackResample-184.R Saving _problems/test_CallbackResample-225.R Saving _problems/test_CallbackResample-244.R Saving _problems/test_Learner-197.R Saving _problems/test_Learner-479.R Saving _problems/test_Learner-562.R <Mlr3TestError: x a > Class: Mlr3TestError > <Mlr3ErrorLearnerNoModel: x No model stored > Class: Mlr3ErrorLearnerNoModel > Saving _problems/test_Learner-1021.R Saving _problems/test_Measure-21.R Saving _problems/test_Measure-66.R Saving _problems/test_Measure-90.R Saving _problems/test_Measure-106.R Saving _problems/test_Measure-122.R Saving _problems/test_Measure-199.R Saving _problems/test_Measure-285.R Saving _problems/test_Measure-306.R Saving _problems/test_MeasureInternalValidScore-5.R Saving _problems/test_MeasureRegrRSQ-112.R Saving _problems/test_MeasureRegrRSQ-183.R Saving _problems/test_PredictionClassif-119.R Saving _problems/test_PredictionRegr-22.R Saving _problems/test_PredictionRegr-44.R Saving _problems/test_Task-874.R Saving _problems/test_Task-1031.R Saving _problems/test_autotest-60.R Saving _problems/test_autotest-162.R Saving _problems/test_benchmark-6.R Saving _problems/test_encapsulate-49.R Saving _problems/test_encapsulate-87.R Saving _problems/test_errorhandling-63.R Saving _problems/test_errorhandling-80.R Saving _problems/test_fallback-48.R Saving _problems/test_fallback-65.R Saving _problems/test_hotstart-134.R Saving _problems/test_hotstart-158.R Saving _problems/test_hotstart-187.R Saving _problems/test_hotstart-222.R Saving _problems/test_hotstart-246.R Saving _problems/test_install_pkgs-25.R Saving _problems/test_lgr-20.R Saving _problems/test_mlr_callbacks-9.R Saving _problems/test_mlr_callbacks-30.R Saving _problems/test_mlr_learners_classif_debug-28.R Saving _problems/test_mlr_learners_classif_featureless-4.R Saving _problems/test_mlr_learners_classif_featureless-43.R Saving _problems/test_mlr_learners_classif_rpart-4.R Saving _problems/test_mlr_learners_regr_featureless-4.R Saving _problems/test_mlr_learners_regr_featureless-11.R Saving _problems/test_mlr_learners_regr_rpart-4.R Saving _problems/test_mlr_measures-31.R Saving _problems/test_mlr_measures_selected_features-6.R Saving _problems/test_mlr_measures_similarity-3.R Saving _problems/test_mlr_reflections-60.R Saving _problems/test_mlr_reflections-76.R Saving _problems/test_mlr_reflections-105.R Saving _problems/test_mlr_resampling_holdout-39.R Saving _problems/test_parallel_future-12.R Saving _problems/test_parallel_future-25.R Saving _problems/test_parallel_future-42.R Saving _problems/test_parallel_future-69.R Saving _problems/test_parallel_future-82.R Saving _problems/test_parallel_mirai-7.R Saving _problems/test_parallel_mirai-18.R Saving _problems/test_parallel_mirai-30.R Saving _problems/test_parallel_mirai-99.R Saving _problems/test_resample-4.R Saving _problems/test_resultdata-9.R Saving _problems/test_resultdata-58.R Saving _problems/test_resultdata-93.R Saving _problems/test_resultdata-131.R Saving _problems/test_resultdata-190.R [ FAIL 79 | WARN 0 | SKIP 12 | PASS 8474 ] ══ Skipped tests (12) ══════════════════════════════════════════════════════════ • Not on GitHub Actions (1): 'test_backward_compatibility.R:1:1' • On CRAN (9): 'test_Learner.R:641:3', 'test_Learner.R:847:3', 'test_Learner.R:870:3', 'test_Learner.R:893:3', 'test_Learner.R:916:3', 'test_Measure.R:129:3', 'test_parallel_future.R:91:3', 'test_parallel_mirai.R:48:3', 'test_parallel_mirai.R:66:3' • empty test (1): 'test_Task.R:911:1' • {distr6} is not installed (1): 'test_PredictionRegr.R:54:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_CallbackResample.R:20:3'): on_resample_begin works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:20:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:39:3'): on_resample_before_train works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:39:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:58:3'): on_resample_before_predict works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:58:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:77:3'): on_resample_end works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:77:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:94:3'): writing to learner$state works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:94:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:127:3'): writing to data_extra works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:127:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:162:3'): data_extra is a list column ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:162:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:184:3'): data_extra is null ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:184:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:225:3'): learner cloning in workhorse is passed to context ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:225:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:244:3'): returning data_extra sometimes works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, callbacks = callback) at test_CallbackResample.R:244:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Learner.R:197:3'): predict train + test set ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, hout) at test_Learner.R:197:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Failure ('test_Learner.R:479:3'): internal_valid_task is created correctly ── Expected `resample(task2, learner2, resampling)` not to throw any errors. Actually got a <simpleError> with message: attempt access index 9/9 in VECTOR_ELT ── Error ('test_Learner.R:562:3'): learner state contains internal valid task information ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Learner.R:562:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Learner.R:1021:3'): oob_error is available without storing models via $.extract_oob_error() ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_Learner.R:1021:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:21:5'): average with micro/macro ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_Measure.R:19:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rs) at test_Measure.R:21:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:66:3'): check_prerequisites / task_properties ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:66:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:90:3'): check_prerequisites / predict_type ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:90:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:106:3'): check_prerequisites / predict_sets ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:106:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:122:3'): time_train works with different predict type (#832) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(...) at test_Measure.R:122:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:199:3'): measure weights ───────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, resampling) at test_Measure.R:199:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:285:3'): primary iters are respected ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_Measure.R:285:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:306:3'): no predict_sets required (#1094) ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(...) at test_Measure.R:306:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureInternalValidScore.R:5:3'): internal valid score ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_MeasureInternalValidScore.R:5:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureRegrRSQ.R:112:3'): MeasureRegrRSQ works with weights during resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_MeasureRegrRSQ.R:112:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureRegrRSQ.R:183:3'): MeasureRegrRSQ use_weights works ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task_plain, learner, resampling) at test_MeasureRegrRSQ.R:183:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionClassif.R:119:3'): c ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionClassif.R:119:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionRegr.R:22:3'): c ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionRegr.R:22:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionRegr.R:44:3'): c drops se (#250) ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionRegr.R:44:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Task.R:874:3'): $characteristics works ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_Task.R:874:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Task.R:1031:3'): weights_measure + stratum works during resampling (#1405) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(...) at test_Task.R:1031:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, lrn("classif.featureless"), rsmp("cv", folds = 3)) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_autotest.R:60:3'): autotest configure_learner works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, 10, exclude = exclude, configure_learner = cfg_lrn) at test_autotest.R:60:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_autotest.R:162:7'): autotest on encapsulation ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_autotest.R:160:5 2. │ └─base::force(expr) 3. └─global run_experiment(task, learner1) at test_autotest.R:162:7 4. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_benchmark.R:6:1'): (code run outside of `test_that()`) ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_benchmark.R:6:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_encapsulate.R:49:3'): evaluate / resample ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_encapsulate.R:49:3 2. │ └─base::withCallingHandlers(...) 3. ├─base::suppressWarnings(...) 4. │ └─base::withCallingHandlers(...) 5. └─mlr3::resample(task, disable_encapsulation(learner), resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_encapsulate.R:87:3'): encapsulate methods produce the same results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_encapsulate.R:87:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_errorhandling.R:63:3'): encapsulation / resample ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_errorhandling.R:63:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_errorhandling.R:80:3'): encapsulation / benchmark ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_errorhandling.R:80:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_fallback.R:48:3'): fail during resample ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("cv", folds = 3)) at test_fallback.R:48:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_fallback.R:65:3'): incomplete predictions ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("cv", folds = 3)) at test_fallback.R:65:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:134:3'): learners are hotstarted when resample is used ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner_1, resampling, store_models = TRUE) at test_hotstart.R:134:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:158:3'): learners are hotstarted when benchmark is called ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE) at test_hotstart.R:158:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:187:3'): learners are trained and hotstarted when benchmark is called ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE) at test_hotstart.R:187:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:222:3'): learners are cloned when hotstarting is applied ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE, allow_hotstart = TRUE) at test_hotstart.R:222:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:246:3'): hotstarting works when col role is set in task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner_1, resampling, store_models = TRUE) at test_hotstart.R:246:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_install_pkgs.R:25:3'): extract_pkgs works ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("mtcars"), lrn("regr.featureless"), rsmp("holdout")) at test_install_pkgs.R:25:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:20:3'): log to text file ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressWarnings(resample(task, learner, resampling)) at test_lgr.R:20:3 2. │ └─base::withCallingHandlers(...) 3. └─mlr3::resample(task, learner, resampling) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:38:3'): logger works ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::capture_output(...) at test_lgr.R:38:3 2. │ └─testthat::capture_output_lines(code, print, width = width) 3. │ └─testthat:::eval_with_output(code, print = print, width = width) 4. │ ├─withr::with_output_sink(path, withVisible(code)) 5. │ │ └─base::force(code) 6. │ └─base::withVisible(code) 7. └─mlr3::resample(...) 8. └─ResultData$new(data, data_extra, store_backends = store_backends) 9. └─mlr3 (local) initialize(...) 10. └─mlr3:::.__ResultData__initialize(...) 11. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 12. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:70:5'): thresholds are restored on workers ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::capture_output(...) at test_lgr.R:69:3 2. │ └─testthat::capture_output_lines(code, print, width = width) 3. │ └─testthat:::eval_with_output(code, print = print, width = width) 4. │ ├─withr::with_output_sink(path, withVisible(code)) 5. │ │ └─base::force(code) 6. │ └─base::withVisible(code) 7. ├─global with_future(...) 8. │ └─base::force(expr) 9. └─mlr3::resample(...) at test_lgr.R:70:5 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:9:3'): model extractor works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling = resampling, callbacks = callback) at test_mlr_callbacks.R:9:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:30:3'): holdout task works ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling = resampling, callbacks = callback) at test_mlr_callbacks.R:30:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_debug.R:28:3'): updating model works / resample ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("holdout"), store_models = TRUE) at test_mlr_learners_classif_debug.R:28:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_featureless.R:4:3'): autotest ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "sanity") at test_mlr_learners_classif_featureless.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_featureless.R:43:3'): classif.featureless works on featureless task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_mlr_learners_classif_featureless.R:43:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_rpart.R:4:3'): autotest ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_mlr_learners_classif_rpart.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_featureless.R:4:3'): autotest ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "sanity") at test_mlr_learners_regr_featureless.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_featureless.R:11:3'): regr.featureless works on featureless task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_mlr_learners_regr_featureless.R:11:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_rpart.R:4:3'): autotest ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_mlr_learners_regr_rpart.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures.R:31:3'): custom aggregation ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_mlr_measures.R:31:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures_selected_features.R:6:3'): selected_features ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("holdout"), store_models = TRUE) at test_mlr_measures_selected_features.R:6:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures_similarity.R:3:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_mlr_measures_similarity.R:3:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:60:3'): resampling works ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_mlr_reflections.R:60:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:76:3'): benchmark works ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid) at test_mlr_reflections.R:76:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:105:5'): external packages can set column roles ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_mlr_reflections.R:104:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, lrn("classif.rpart"), rsmp("cv", folds = 3)) at test_mlr_reflections.R:105:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_resampling_holdout.R:39:3'): prediction does not drop dimension (#551) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_mlr_resampling_holdout.R:39:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:12:7'): parallel resample ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:7:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:11:5 4. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_future.R:12:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:25:3'): seeds work identical during sequential and parallel execution ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_parallel_future.R:25:3 2. │ └─base::force(expr) 3. ├─global with_future(future::sequential, resample(task, learner, resampling)) 4. │ └─base::force(expr) 5. └─mlr3::resample(task, learner, resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:42:7'): parallel benchmark ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:40:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:41:5 4. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_parallel_future.R:42:7 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:69:7'): real parallel resample ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:64:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:68:5 4. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_future.R:69:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:82:3'): parallel seed ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(123, resample(task, learner, rsmp("cv", folds = 3))) at test_parallel_future.R:82:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:7:5'): parallel resample ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:4:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_mirai.R:7:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:18:5'): parallel benchmark ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:17:3 2. │ └─base::force(expr) 3. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_parallel_mirai.R:18:5 4. └─ResultData$new(grid, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:30:5'): mirai resample is reproducible ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:26:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) at test_parallel_mirai.R:30:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:99:5'): mirai compute profile can be changed ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:94:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) at test_parallel_mirai.R:99:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_resample.R:4:1'): (code run outside of `test_that()`) ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_resample.R:4:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:9:3'): results are ordered ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_resultdata.R:9:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:58:3'): mlr3tuning use case ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(...) at test_resultdata.R:58:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:93:3'): predict set selection ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_resultdata.R:93:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:131:3'): data_extra works ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::as_result_data(...) at test_resultdata.R:131:3 2. └─ResultData$new(...) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:190:3'): combine with data_extra works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::as_result_data(...) at test_resultdata.R:190:3 2. └─ResultData$new(...) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) [ FAIL 79 | WARN 0 | SKIP 12 | PASS 8474 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.3.0
Check: examples
Result: ERROR Running examples in ‘mlr3-Ex.R’ failed The error most likely occurred in: > ### Name: BenchmarkResult > ### Title: Container for Benchmarking Results > ### Aliases: BenchmarkResult > > ### ** Examples > > set.seed(123) > learners = list( + lrn("classif.featureless", predict_type = "prob"), + lrn("classif.rpart", predict_type = "prob") + ) > > design = benchmark_grid( + tasks = list(tsk("sonar"), tsk("penguins")), + learners = learners, + resamplings = rsmp("cv", folds = 3) + ) > print(design) task learner resampling <char> <char> <char> 1: sonar classif.featureless cv 2: sonar classif.rpart cv 3: penguins classif.featureless cv 4: penguins classif.rpart cv > > bmr = benchmark(design) INFO [17:49:34.539] [mlr3] Running benchmark with 12 resampling iterations INFO [17:49:35.144] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [17:49:35.264] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [17:49:35.429] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [17:49:35.579] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [17:49:35.907] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [17:49:36.012] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [17:49:36.165] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 1/3) INFO [17:49:36.241] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 2/3) INFO [17:49:36.347] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 3/3) INFO [17:49:36.401] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 1/3) INFO [17:49:36.473] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 2/3) INFO [17:49:36.539] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 3/3) INFO [17:49:36.783] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.3.0
Check: tests
Result: ERROR Running ‘testthat.R’ [286s/551s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + test_check("mlr3") + } Saving _problems/test_CallbackResample-20.R Saving _problems/test_CallbackResample-39.R Saving _problems/test_CallbackResample-58.R Saving _problems/test_CallbackResample-77.R Saving _problems/test_CallbackResample-94.R Saving _problems/test_CallbackResample-127.R Saving _problems/test_CallbackResample-162.R Saving _problems/test_CallbackResample-184.R Saving _problems/test_CallbackResample-225.R Saving _problems/test_CallbackResample-244.R Saving _problems/test_Learner-197.R Saving _problems/test_Learner-479.R Saving _problems/test_Learner-562.R <Mlr3TestError: x a > Class: Mlr3TestError > <Mlr3ErrorLearnerNoModel: x No model stored > Class: Mlr3ErrorLearnerNoModel > Saving _problems/test_Learner-1021.R Saving _problems/test_Measure-21.R Saving _problems/test_Measure-66.R Saving _problems/test_Measure-90.R Saving _problems/test_Measure-106.R Saving _problems/test_Measure-122.R Saving _problems/test_Measure-199.R Saving _problems/test_Measure-285.R Saving _problems/test_Measure-306.R Saving _problems/test_MeasureInternalValidScore-5.R Saving _problems/test_MeasureRegrRSQ-112.R Saving _problems/test_MeasureRegrRSQ-183.R Saving _problems/test_PredictionClassif-119.R Saving _problems/test_PredictionRegr-22.R Saving _problems/test_PredictionRegr-44.R Saving _problems/test_Task-874.R Saving _problems/test_Task-1031.R Saving _problems/test_autotest-60.R Saving _problems/test_autotest-162.R Saving _problems/test_benchmark-6.R Saving _problems/test_encapsulate-49.R Saving _problems/test_encapsulate-87.R Saving _problems/test_errorhandling-63.R Saving _problems/test_errorhandling-80.R Saving _problems/test_fallback-48.R Saving _problems/test_fallback-65.R Saving _problems/test_hotstart-134.R Saving _problems/test_hotstart-158.R Saving _problems/test_hotstart-187.R Saving _problems/test_hotstart-222.R Saving _problems/test_hotstart-246.R Saving _problems/test_install_pkgs-25.R Saving _problems/test_lgr-20.R Saving _problems/test_mlr_callbacks-9.R Saving _problems/test_mlr_callbacks-30.R Saving _problems/test_mlr_learners_classif_debug-28.R Saving _problems/test_mlr_learners_classif_featureless-4.R Saving _problems/test_mlr_learners_classif_featureless-43.R Saving _problems/test_mlr_learners_classif_rpart-4.R Saving _problems/test_mlr_learners_regr_featureless-4.R Saving _problems/test_mlr_learners_regr_featureless-11.R Saving _problems/test_mlr_learners_regr_rpart-4.R Saving _problems/test_mlr_measures-31.R Saving _problems/test_mlr_measures_selected_features-6.R Saving _problems/test_mlr_measures_similarity-3.R Saving _problems/test_mlr_reflections-60.R Saving _problems/test_mlr_reflections-76.R Saving _problems/test_mlr_reflections-105.R Saving _problems/test_mlr_resampling_holdout-39.R Saving _problems/test_parallel_future-12.R Saving _problems/test_parallel_future-25.R Saving _problems/test_parallel_future-42.R Saving _problems/test_parallel_future-69.R Saving _problems/test_parallel_future-82.R Saving _problems/test_parallel_mirai-7.R Saving _problems/test_parallel_mirai-18.R Saving _problems/test_parallel_mirai-30.R Saving _problems/test_parallel_mirai-99.R Saving _problems/test_resample-4.R Saving _problems/test_resultdata-9.R Saving _problems/test_resultdata-58.R Saving _problems/test_resultdata-93.R Saving _problems/test_resultdata-131.R Saving _problems/test_resultdata-190.R [ FAIL 79 | WARN 0 | SKIP 12 | PASS 8474 ] ══ Skipped tests (12) ══════════════════════════════════════════════════════════ • Not on GitHub Actions (1): 'test_backward_compatibility.R:1:1' • On CRAN (9): 'test_Learner.R:641:3', 'test_Learner.R:847:3', 'test_Learner.R:870:3', 'test_Learner.R:893:3', 'test_Learner.R:916:3', 'test_Measure.R:129:3', 'test_parallel_future.R:91:3', 'test_parallel_mirai.R:48:3', 'test_parallel_mirai.R:66:3' • empty test (1): 'test_Task.R:911:1' • {distr6} is not installed (1): 'test_PredictionRegr.R:54:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_CallbackResample.R:20:3'): on_resample_begin works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:20:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:39:3'): on_resample_before_train works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:39:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:58:3'): on_resample_before_predict works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:58:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:77:3'): on_resample_end works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:77:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:94:3'): writing to learner$state works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:94:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:127:3'): writing to data_extra works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:127:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:162:3'): data_extra is a list column ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:162:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:184:3'): data_extra is null ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:184:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:225:3'): learner cloning in workhorse is passed to context ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:225:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:244:3'): returning data_extra sometimes works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, callbacks = callback) at test_CallbackResample.R:244:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Learner.R:197:3'): predict train + test set ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, hout) at test_Learner.R:197:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Failure ('test_Learner.R:479:3'): internal_valid_task is created correctly ── Expected `resample(task2, learner2, resampling)` not to throw any errors. Actually got a <simpleError> with message: attempt access index 9/9 in VECTOR_ELT ── Error ('test_Learner.R:562:3'): learner state contains internal valid task information ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Learner.R:562:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Learner.R:1021:3'): oob_error is available without storing models via $.extract_oob_error() ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_Learner.R:1021:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:21:5'): average with micro/macro ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_Measure.R:19:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rs) at test_Measure.R:21:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:66:3'): check_prerequisites / task_properties ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:66:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:90:3'): check_prerequisites / predict_type ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:90:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:106:3'): check_prerequisites / predict_sets ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:106:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:122:3'): time_train works with different predict type (#832) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(...) at test_Measure.R:122:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:199:3'): measure weights ───────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, resampling) at test_Measure.R:199:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:285:3'): primary iters are respected ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_Measure.R:285:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:306:3'): no predict_sets required (#1094) ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(...) at test_Measure.R:306:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureInternalValidScore.R:5:3'): internal valid score ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_MeasureInternalValidScore.R:5:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureRegrRSQ.R:112:3'): MeasureRegrRSQ works with weights during resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_MeasureRegrRSQ.R:112:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureRegrRSQ.R:183:3'): MeasureRegrRSQ use_weights works ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task_plain, learner, resampling) at test_MeasureRegrRSQ.R:183:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionClassif.R:119:3'): c ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionClassif.R:119:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionRegr.R:22:3'): c ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionRegr.R:22:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionRegr.R:44:3'): c drops se (#250) ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionRegr.R:44:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Task.R:874:3'): $characteristics works ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_Task.R:874:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Task.R:1031:3'): weights_measure + stratum works during resampling (#1405) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(...) at test_Task.R:1031:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, lrn("classif.featureless"), rsmp("cv", folds = 3)) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_autotest.R:60:3'): autotest configure_learner works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, 10, exclude = exclude, configure_learner = cfg_lrn) at test_autotest.R:60:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_autotest.R:162:7'): autotest on encapsulation ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_autotest.R:160:5 2. │ └─base::force(expr) 3. └─global run_experiment(task, learner1) at test_autotest.R:162:7 4. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_benchmark.R:6:1'): (code run outside of `test_that()`) ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_benchmark.R:6:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_encapsulate.R:49:3'): evaluate / resample ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_encapsulate.R:49:3 2. │ └─base::withCallingHandlers(...) 3. ├─base::suppressWarnings(...) 4. │ └─base::withCallingHandlers(...) 5. └─mlr3::resample(task, disable_encapsulation(learner), resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_encapsulate.R:87:3'): encapsulate methods produce the same results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_encapsulate.R:87:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_errorhandling.R:63:3'): encapsulation / resample ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_errorhandling.R:63:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_errorhandling.R:80:3'): encapsulation / benchmark ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_errorhandling.R:80:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_fallback.R:48:3'): fail during resample ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("cv", folds = 3)) at test_fallback.R:48:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_fallback.R:65:3'): incomplete predictions ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("cv", folds = 3)) at test_fallback.R:65:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:134:3'): learners are hotstarted when resample is used ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner_1, resampling, store_models = TRUE) at test_hotstart.R:134:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:158:3'): learners are hotstarted when benchmark is called ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE) at test_hotstart.R:158:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:187:3'): learners are trained and hotstarted when benchmark is called ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE) at test_hotstart.R:187:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:222:3'): learners are cloned when hotstarting is applied ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE, allow_hotstart = TRUE) at test_hotstart.R:222:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:246:3'): hotstarting works when col role is set in task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner_1, resampling, store_models = TRUE) at test_hotstart.R:246:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_install_pkgs.R:25:3'): extract_pkgs works ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("mtcars"), lrn("regr.featureless"), rsmp("holdout")) at test_install_pkgs.R:25:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:20:3'): log to text file ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressWarnings(resample(task, learner, resampling)) at test_lgr.R:20:3 2. │ └─base::withCallingHandlers(...) 3. └─mlr3::resample(task, learner, resampling) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:38:3'): logger works ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::capture_output(...) at test_lgr.R:38:3 2. │ └─testthat::capture_output_lines(code, print, width = width) 3. │ └─testthat:::eval_with_output(code, print = print, width = width) 4. │ ├─withr::with_output_sink(path, withVisible(code)) 5. │ │ └─base::force(code) 6. │ └─base::withVisible(code) 7. └─mlr3::resample(...) 8. └─ResultData$new(data, data_extra, store_backends = store_backends) 9. └─mlr3 (local) initialize(...) 10. └─mlr3:::.__ResultData__initialize(...) 11. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 12. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:70:5'): thresholds are restored on workers ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::capture_output(...) at test_lgr.R:69:3 2. │ └─testthat::capture_output_lines(code, print, width = width) 3. │ └─testthat:::eval_with_output(code, print = print, width = width) 4. │ ├─withr::with_output_sink(path, withVisible(code)) 5. │ │ └─base::force(code) 6. │ └─base::withVisible(code) 7. ├─global with_future(...) 8. │ └─base::force(expr) 9. └─mlr3::resample(...) at test_lgr.R:70:5 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:9:3'): model extractor works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling = resampling, callbacks = callback) at test_mlr_callbacks.R:9:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:30:3'): holdout task works ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling = resampling, callbacks = callback) at test_mlr_callbacks.R:30:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_debug.R:28:3'): updating model works / resample ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("holdout"), store_models = TRUE) at test_mlr_learners_classif_debug.R:28:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_featureless.R:4:3'): autotest ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "sanity") at test_mlr_learners_classif_featureless.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_featureless.R:43:3'): classif.featureless works on featureless task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_mlr_learners_classif_featureless.R:43:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_rpart.R:4:3'): autotest ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_mlr_learners_classif_rpart.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_featureless.R:4:3'): autotest ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "sanity") at test_mlr_learners_regr_featureless.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_featureless.R:11:3'): regr.featureless works on featureless task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_mlr_learners_regr_featureless.R:11:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_rpart.R:4:3'): autotest ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_mlr_learners_regr_rpart.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures.R:31:3'): custom aggregation ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_mlr_measures.R:31:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures_selected_features.R:6:3'): selected_features ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("holdout"), store_models = TRUE) at test_mlr_measures_selected_features.R:6:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures_similarity.R:3:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_mlr_measures_similarity.R:3:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:60:3'): resampling works ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_mlr_reflections.R:60:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:76:3'): benchmark works ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid) at test_mlr_reflections.R:76:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:105:5'): external packages can set column roles ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_mlr_reflections.R:104:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, lrn("classif.rpart"), rsmp("cv", folds = 3)) at test_mlr_reflections.R:105:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_resampling_holdout.R:39:3'): prediction does not drop dimension (#551) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_mlr_resampling_holdout.R:39:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:12:7'): parallel resample ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:7:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:11:5 4. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_future.R:12:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:25:3'): seeds work identical during sequential and parallel execution ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_parallel_future.R:25:3 2. │ └─base::force(expr) 3. ├─global with_future(future::sequential, resample(task, learner, resampling)) 4. │ └─base::force(expr) 5. └─mlr3::resample(task, learner, resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:42:7'): parallel benchmark ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:40:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:41:5 4. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_parallel_future.R:42:7 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:69:7'): real parallel resample ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:64:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:68:5 4. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_future.R:69:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:82:3'): parallel seed ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(123, resample(task, learner, rsmp("cv", folds = 3))) at test_parallel_future.R:82:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:7:5'): parallel resample ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:4:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_mirai.R:7:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:18:5'): parallel benchmark ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:17:3 2. │ └─base::force(expr) 3. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_parallel_mirai.R:18:5 4. └─ResultData$new(grid, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:30:5'): mirai resample is reproducible ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:26:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) at test_parallel_mirai.R:30:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:99:5'): mirai compute profile can be changed ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:94:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) at test_parallel_mirai.R:99:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_resample.R:4:1'): (code run outside of `test_that()`) ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_resample.R:4:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:9:3'): results are ordered ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_resultdata.R:9:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:58:3'): mlr3tuning use case ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(...) at test_resultdata.R:58:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:93:3'): predict set selection ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_resultdata.R:93:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:131:3'): data_extra works ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::as_result_data(...) at test_resultdata.R:131:3 2. └─ResultData$new(...) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:190:3'): combine with data_extra works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::as_result_data(...) at test_resultdata.R:190:3 2. └─ResultData$new(...) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) [ FAIL 79 | WARN 0 | SKIP 12 | PASS 8474 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.3.0
Check: examples
Result: ERROR Running examples in ‘mlr3-Ex.R’ failed The error most likely occurred in: > ### Name: BenchmarkResult > ### Title: Container for Benchmarking Results > ### Aliases: BenchmarkResult > > ### ** Examples > > set.seed(123) > learners = list( + lrn("classif.featureless", predict_type = "prob"), + lrn("classif.rpart", predict_type = "prob") + ) > > design = benchmark_grid( + tasks = list(tsk("sonar"), tsk("penguins")), + learners = learners, + resamplings = rsmp("cv", folds = 3) + ) > print(design) task learner resampling <char> <char> <char> 1: sonar classif.featureless cv 2: sonar classif.rpart cv 3: penguins classif.featureless cv 4: penguins classif.rpart cv > > bmr = benchmark(design) INFO [12:29:24.656] [mlr3] Running benchmark with 12 resampling iterations INFO [12:29:24.960] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/3) INFO [12:29:25.060] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/3) INFO [12:29:25.122] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/3) INFO [12:29:25.171] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/3) INFO [12:29:25.269] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/3) INFO [12:29:25.416] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/3) INFO [12:29:25.494] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 1/3) INFO [12:29:25.565] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 2/3) INFO [12:29:25.605] [mlr3] Applying learner 'classif.featureless' on task 'penguins' (iter 3/3) INFO [12:29:25.652] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 1/3) INFO [12:29:25.711] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 2/3) INFO [12:29:25.769] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 3/3) INFO [12:29:25.864] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.3.0
Check: tests
Result: ERROR Running ‘testthat.R’ [247s/375s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("checkmate") + library("testthat") + library("mlr3") + test_check("mlr3") + } Saving _problems/test_CallbackResample-20.R Saving _problems/test_CallbackResample-39.R Saving _problems/test_CallbackResample-58.R Saving _problems/test_CallbackResample-77.R Saving _problems/test_CallbackResample-94.R Saving _problems/test_CallbackResample-127.R Saving _problems/test_CallbackResample-162.R Saving _problems/test_CallbackResample-184.R Saving _problems/test_CallbackResample-225.R Saving _problems/test_CallbackResample-244.R Saving _problems/test_Learner-197.R Saving _problems/test_Learner-479.R Saving _problems/test_Learner-562.R <Mlr3TestError: x a > Class: Mlr3TestError > <Mlr3ErrorLearnerNoModel: x No model stored > Class: Mlr3ErrorLearnerNoModel > Saving _problems/test_Learner-1021.R Saving _problems/test_Measure-21.R Saving _problems/test_Measure-66.R Saving _problems/test_Measure-90.R Saving _problems/test_Measure-106.R Saving _problems/test_Measure-122.R Saving _problems/test_Measure-199.R Saving _problems/test_Measure-285.R Saving _problems/test_Measure-306.R Saving _problems/test_MeasureInternalValidScore-5.R Saving _problems/test_MeasureRegrRSQ-112.R Saving _problems/test_MeasureRegrRSQ-183.R Saving _problems/test_PredictionClassif-119.R Saving _problems/test_PredictionRegr-22.R Saving _problems/test_PredictionRegr-44.R Saving _problems/test_Task-874.R Saving _problems/test_Task-1031.R Saving _problems/test_autotest-60.R Saving _problems/test_autotest-162.R Saving _problems/test_benchmark-6.R Saving _problems/test_encapsulate-49.R Saving _problems/test_encapsulate-87.R Saving _problems/test_errorhandling-63.R Saving _problems/test_errorhandling-80.R Saving _problems/test_fallback-48.R Saving _problems/test_fallback-65.R Saving _problems/test_hotstart-134.R Saving _problems/test_hotstart-158.R Saving _problems/test_hotstart-187.R Saving _problems/test_hotstart-222.R Saving _problems/test_hotstart-246.R Saving _problems/test_install_pkgs-25.R Saving _problems/test_lgr-20.R Saving _problems/test_mlr_callbacks-9.R Saving _problems/test_mlr_callbacks-30.R Saving _problems/test_mlr_learners_classif_debug-28.R Saving _problems/test_mlr_learners_classif_featureless-4.R Saving _problems/test_mlr_learners_classif_featureless-43.R Saving _problems/test_mlr_learners_classif_rpart-4.R Saving _problems/test_mlr_learners_regr_featureless-4.R Saving _problems/test_mlr_learners_regr_featureless-11.R Saving _problems/test_mlr_learners_regr_rpart-4.R Saving _problems/test_mlr_measures-31.R Saving _problems/test_mlr_measures_selected_features-6.R Saving _problems/test_mlr_measures_similarity-3.R Saving _problems/test_mlr_reflections-60.R Saving _problems/test_mlr_reflections-76.R Saving _problems/test_mlr_reflections-105.R Saving _problems/test_mlr_resampling_holdout-39.R Saving _problems/test_parallel_future-12.R Saving _problems/test_parallel_future-25.R Saving _problems/test_parallel_future-42.R Saving _problems/test_parallel_future-69.R Saving _problems/test_parallel_future-82.R Saving _problems/test_parallel_mirai-7.R Saving _problems/test_parallel_mirai-18.R Saving _problems/test_parallel_mirai-30.R Saving _problems/test_parallel_mirai-99.R Saving _problems/test_resample-4.R Saving _problems/test_resultdata-9.R Saving _problems/test_resultdata-58.R Saving _problems/test_resultdata-93.R Saving _problems/test_resultdata-131.R Saving _problems/test_resultdata-190.R [ FAIL 79 | WARN 0 | SKIP 12 | PASS 8474 ] ══ Skipped tests (12) ══════════════════════════════════════════════════════════ • Not on GitHub Actions (1): 'test_backward_compatibility.R:1:1' • On CRAN (9): 'test_Learner.R:641:3', 'test_Learner.R:847:3', 'test_Learner.R:870:3', 'test_Learner.R:893:3', 'test_Learner.R:916:3', 'test_Measure.R:129:3', 'test_parallel_future.R:91:3', 'test_parallel_mirai.R:48:3', 'test_parallel_mirai.R:66:3' • empty test (1): 'test_Task.R:911:1' • {distr6} is not installed (1): 'test_PredictionRegr.R:54:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_CallbackResample.R:20:3'): on_resample_begin works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:20:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:39:3'): on_resample_before_train works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:39:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:58:3'): on_resample_before_predict works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:58:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:77:3'): on_resample_end works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(resample(task, learner, resampling, callbacks = callback)) at test_CallbackResample.R:77:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, learner, resampling, callbacks = callback) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:94:3'): writing to learner$state works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:94:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:127:3'): writing to data_extra works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:127:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:162:3'): data_extra is a list column ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:162:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:184:3'): data_extra is null ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:184:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:225:3'): learner cloning in workhorse is passed to context ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling, callbacks = callback) at test_CallbackResample.R:225:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackResample.R:244:3'): returning data_extra sometimes works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, callbacks = callback) at test_CallbackResample.R:244:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Learner.R:197:3'): predict train + test set ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, hout) at test_Learner.R:197:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Failure ('test_Learner.R:479:3'): internal_valid_task is created correctly ── Expected `resample(task2, learner2, resampling)` not to throw any errors. Actually got a <simpleError> with message: attempt access index 9/9 in VECTOR_ELT ── Error ('test_Learner.R:562:3'): learner state contains internal valid task information ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Learner.R:562:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Learner.R:1021:3'): oob_error is available without storing models via $.extract_oob_error() ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_Learner.R:1021:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:21:5'): average with micro/macro ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_Measure.R:19:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rs) at test_Measure.R:21:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:66:3'): check_prerequisites / task_properties ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:66:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:90:3'): check_prerequisites / predict_type ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:90:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:106:3'): check_prerequisites / predict_sets ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_Measure.R:106:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:122:3'): time_train works with different predict type (#832) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(...) at test_Measure.R:122:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:199:3'): measure weights ───────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, resampling) at test_Measure.R:199:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:285:3'): primary iters are respected ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_Measure.R:285:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Measure.R:306:3'): no predict_sets required (#1094) ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(...) at test_Measure.R:306:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureInternalValidScore.R:5:3'): internal valid score ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_MeasureInternalValidScore.R:5:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureRegrRSQ.R:112:3'): MeasureRegrRSQ works with weights during resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_MeasureRegrRSQ.R:112:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_MeasureRegrRSQ.R:183:3'): MeasureRegrRSQ use_weights works ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task_plain, learner, resampling) at test_MeasureRegrRSQ.R:183:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionClassif.R:119:3'): c ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionClassif.R:119:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionRegr.R:22:3'): c ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionRegr.R:22:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_PredictionRegr.R:44:3'): c drops se (#250) ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_PredictionRegr.R:44:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Task.R:874:3'): $characteristics works ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_Task.R:874:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_Task.R:1031:3'): weights_measure + stratum works during resampling (#1405) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global expect_resample_result(...) at test_Task.R:1031:3 2. │ └─checkmate::expect_r6(rr, "ResampleResult") 3. │ └─checkmate::checkR6(...) 4. └─mlr3::resample(task, lrn("classif.featureless"), rsmp("cv", folds = 3)) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_autotest.R:60:3'): autotest configure_learner works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, 10, exclude = exclude, configure_learner = cfg_lrn) at test_autotest.R:60:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_autotest.R:162:7'): autotest on encapsulation ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_autotest.R:160:5 2. │ └─base::force(expr) 3. └─global run_experiment(task, learner1) at test_autotest.R:162:7 4. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_benchmark.R:6:1'): (code run outside of `test_that()`) ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_benchmark.R:6:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_encapsulate.R:49:3'): evaluate / resample ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_encapsulate.R:49:3 2. │ └─base::withCallingHandlers(...) 3. ├─base::suppressWarnings(...) 4. │ └─base::withCallingHandlers(...) 5. └─mlr3::resample(task, disable_encapsulation(learner), resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_encapsulate.R:87:3'): encapsulate methods produce the same results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_encapsulate.R:87:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_errorhandling.R:63:3'): encapsulation / resample ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_errorhandling.R:63:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_errorhandling.R:80:3'): encapsulation / benchmark ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_errorhandling.R:80:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_fallback.R:48:3'): fail during resample ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("cv", folds = 3)) at test_fallback.R:48:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_fallback.R:65:3'): incomplete predictions ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("cv", folds = 3)) at test_fallback.R:65:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:134:3'): learners are hotstarted when resample is used ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner_1, resampling, store_models = TRUE) at test_hotstart.R:134:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:158:3'): learners are hotstarted when benchmark is called ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE) at test_hotstart.R:158:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:187:3'): learners are trained and hotstarted when benchmark is called ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE) at test_hotstart.R:187:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:222:3'): learners are cloned when hotstarting is applied ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design, store_models = TRUE, allow_hotstart = TRUE) at test_hotstart.R:222:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_hotstart.R:246:3'): hotstarting works when col role is set in task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner_1, resampling, store_models = TRUE) at test_hotstart.R:246:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_install_pkgs.R:25:3'): extract_pkgs works ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("mtcars"), lrn("regr.featureless"), rsmp("holdout")) at test_install_pkgs.R:25:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:20:3'): log to text file ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressWarnings(resample(task, learner, resampling)) at test_lgr.R:20:3 2. │ └─base::withCallingHandlers(...) 3. └─mlr3::resample(task, learner, resampling) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:38:3'): logger works ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::capture_output(...) at test_lgr.R:38:3 2. │ └─testthat::capture_output_lines(code, print, width = width) 3. │ └─testthat:::eval_with_output(code, print = print, width = width) 4. │ ├─withr::with_output_sink(path, withVisible(code)) 5. │ │ └─base::force(code) 6. │ └─base::withVisible(code) 7. └─mlr3::resample(...) 8. └─ResultData$new(data, data_extra, store_backends = store_backends) 9. └─mlr3 (local) initialize(...) 10. └─mlr3:::.__ResultData__initialize(...) 11. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 12. └─data.table:::`[.data.table`(...) ── Error ('test_lgr.R:70:5'): thresholds are restored on workers ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::capture_output(...) at test_lgr.R:69:3 2. │ └─testthat::capture_output_lines(code, print, width = width) 3. │ └─testthat:::eval_with_output(code, print = print, width = width) 4. │ ├─withr::with_output_sink(path, withVisible(code)) 5. │ │ └─base::force(code) 6. │ └─base::withVisible(code) 7. ├─global with_future(...) 8. │ └─base::force(expr) 9. └─mlr3::resample(...) at test_lgr.R:70:5 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:9:3'): model extractor works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling = resampling, callbacks = callback) at test_mlr_callbacks.R:9:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:30:3'): holdout task works ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling = resampling, callbacks = callback) at test_mlr_callbacks.R:30:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_debug.R:28:3'): updating model works / resample ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), learner, rsmp("holdout"), store_models = TRUE) at test_mlr_learners_classif_debug.R:28:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_featureless.R:4:3'): autotest ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "sanity") at test_mlr_learners_classif_featureless.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_featureless.R:43:3'): classif.featureless works on featureless task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_mlr_learners_classif_featureless.R:43:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_classif_rpart.R:4:3'): autotest ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_mlr_learners_classif_rpart.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_featureless.R:4:3'): autotest ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "sanity") at test_mlr_learners_regr_featureless.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_featureless.R:11:3'): regr.featureless works on featureless task ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout")) at test_mlr_learners_regr_featureless.R:11:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_learners_regr_rpart.R:4:3'): autotest ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_mlr_learners_regr_rpart.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures.R:31:3'): custom aggregation ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("cv", folds = 3)) at test_mlr_measures.R:31:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures_selected_features.R:6:3'): selected_features ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, lrn, rsmp("holdout"), store_models = TRUE) at test_mlr_measures_selected_features.R:6:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_measures_similarity.R:3:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_mlr_measures_similarity.R:3:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:60:3'): resampling works ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_mlr_reflections.R:60:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:76:3'): benchmark works ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid) at test_mlr_reflections.R:76:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_reflections.R:105:5'): external packages can set column roles ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_mlr_reflections.R:104:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, lrn("classif.rpart"), rsmp("cv", folds = 3)) at test_mlr_reflections.R:105:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_resampling_holdout.R:39:3'): prediction does not drop dimension (#551) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(design) at test_mlr_resampling_holdout.R:39:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:12:7'): parallel resample ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:7:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:11:5 4. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_future.R:12:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:25:3'): seeds work identical during sequential and parallel execution ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_parallel_future.R:25:3 2. │ └─base::force(expr) 3. ├─global with_future(future::sequential, resample(task, learner, resampling)) 4. │ └─base::force(expr) 5. └─mlr3::resample(task, learner, resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:42:7'): parallel benchmark ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:40:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:41:5 4. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_parallel_future.R:42:7 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:69:7'): real parallel resample ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_parallel_future.R:64:3 2. │ └─base::force(expr) 3. ├─progressr::with_progress(...) at test_parallel_future.R:68:5 4. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_future.R:69:7 5. └─ResultData$new(data, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_future.R:82:3'): parallel seed ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(123, resample(task, learner, rsmp("cv", folds = 3))) at test_parallel_future.R:82:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:7:5'): parallel resample ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:4:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, rsmp("cv", folds = 3)) at test_parallel_mirai.R:7:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:18:5'): parallel benchmark ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:17:3 2. │ └─base::force(expr) 3. └─mlr3::benchmark(benchmark_grid(task, learner, rsmp("cv", folds = 3))) at test_parallel_mirai.R:18:5 4. └─ResultData$new(grid, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:30:5'): mirai resample is reproducible ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:26:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) at test_parallel_mirai.R:30:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_parallel_mirai.R:99:5'): mirai compute profile can be changed ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_mirai(...) at test_parallel_mirai.R:94:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, resampling, store_models = TRUE) at test_parallel_mirai.R:99:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_resample.R:4:1'): (code run outside of `test_that()`) ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_resample.R:4:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:9:3'): results are ordered ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_resultdata.R:9:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:58:3'): mlr3tuning use case ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(...) at test_resultdata.R:58:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:93:3'): predict set selection ───────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_resultdata.R:93:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:131:3'): data_extra works ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::as_result_data(...) at test_resultdata.R:131:3 2. └─ResultData$new(...) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_resultdata.R:190:3'): combine with data_extra works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::as_result_data(...) at test_resultdata.R:190:3 2. └─ResultData$new(...) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) [ FAIL 79 | WARN 0 | SKIP 12 | PASS 8474 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.3.0
Check: installed package size
Result: NOTE installed size is 5.0Mb sub-directories of 1Mb or more: R 2.0Mb help 2.2Mb Flavor: r-oldrel-macos-x86_64

Package mlr3batchmark

Current CRAN status: ERROR: 4, OK: 9

Version: 0.2.2
Check: examples
Result: ERROR Running examples in ‘mlr3batchmark-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: batchmark > ### Title: Benchmark Experiments on Batch Systems > ### Aliases: batchmark > > ### ** Examples > > tasks = list(mlr3::tsk("iris"), mlr3::tsk("sonar")) > learners = list(mlr3::lrn("classif.featureless"), mlr3::lrn("classif.rpart")) > resamplings = list(mlr3::rsmp("cv", folds = 3), mlr3::rsmp("holdout")) > > design = mlr3::benchmark_grid( + tasks = tasks, + learners = learners, + resamplings = resamplings + ) > > reg = batchtools::makeExperimentRegistry(NA) No readable configuration file found Created registry in '/home/hornik/tmp/scratch/RtmpYTX6uK/registry3a6fc761f3ac7' using cluster functions 'Interactive' > batchmark(design, reg = reg) Adding algorithm 'run_learner' Error in `[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", : attempt access index 8/8 in VECTOR_ELT Calls: batchmark -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.2.2
Check: tests
Result: ERROR Running ‘testthat.R’ [4s/5s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3batchmark") + test_check("mlr3batchmark") + } Loading required package: batchtools Saving _problems/test_batchmark-13.R Saving _problems/test_batchmark-42.R Saving _problems/test_batchmark-67.R Saving _problems/test_batchmark-92.R Saving _problems/test_batchmark-114.R Saving _problems/test_reduceResultsBatchmark-13.R Saving _problems/test_reduceResultsBatchmark-50.R [ FAIL 7 | WARN 0 | SKIP 0 | PASS 0 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_batchmark.R:13:3'): basic workflow ───────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:13:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:42:3'): parallel multicore ───────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:42:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:67:3'): failing jobs ─────────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:67:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:92:3'): marshaling ───────────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(...) at test_batchmark.R:92:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:114:3'): adding parameter values works ───────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:114:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_reduceResultsBatchmark.R:13:3'): reduceResultsBatchmark ──────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg, store_models = TRUE) at test_reduceResultsBatchmark.R:13:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_reduceResultsBatchmark.R:50:3'): warning is given when mlr3 versions mismatch ── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(...) at test_reduceResultsBatchmark.R:50:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 0 | SKIP 0 | PASS 0 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.2.2
Check: examples
Result: ERROR Running examples in ‘mlr3batchmark-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: batchmark > ### Title: Benchmark Experiments on Batch Systems > ### Aliases: batchmark > > ### ** Examples > > tasks = list(mlr3::tsk("iris"), mlr3::tsk("sonar")) > learners = list(mlr3::lrn("classif.featureless"), mlr3::lrn("classif.rpart")) > resamplings = list(mlr3::rsmp("cv", folds = 3), mlr3::rsmp("holdout")) > > design = mlr3::benchmark_grid( + tasks = tasks, + learners = learners, + resamplings = resamplings + ) > > reg = batchtools::makeExperimentRegistry(NA) No readable configuration file found Created registry in '/tmp/RtmpPBrj84/registry18c6ed7cb1c778' using cluster functions 'Interactive' > batchmark(design, reg = reg) Adding algorithm 'run_learner' Error in `[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", : attempt access index 8/8 in VECTOR_ELT Calls: batchmark -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.2.2
Check: tests
Result: ERROR Running ‘testthat.R’ [2s/3s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3batchmark") + test_check("mlr3batchmark") + } Loading required package: batchtools Saving _problems/test_batchmark-13.R Saving _problems/test_batchmark-42.R Saving _problems/test_batchmark-67.R Saving _problems/test_batchmark-92.R Saving _problems/test_batchmark-114.R Saving _problems/test_reduceResultsBatchmark-13.R Saving _problems/test_reduceResultsBatchmark-50.R [ FAIL 7 | WARN 0 | SKIP 0 | PASS 0 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_batchmark.R:13:3'): basic workflow ───────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:13:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:42:3'): parallel multicore ───────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:42:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:67:3'): failing jobs ─────────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:67:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:92:3'): marshaling ───────────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(...) at test_batchmark.R:92:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:114:3'): adding parameter values works ───────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:114:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_reduceResultsBatchmark.R:13:3'): reduceResultsBatchmark ──────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg, store_models = TRUE) at test_reduceResultsBatchmark.R:13:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_reduceResultsBatchmark.R:50:3'): warning is given when mlr3 versions mismatch ── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(...) at test_reduceResultsBatchmark.R:50:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 0 | SKIP 0 | PASS 0 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.2.2
Check: examples
Result: ERROR Running examples in ‘mlr3batchmark-Ex.R’ failed The error most likely occurred in: > ### Name: batchmark > ### Title: Benchmark Experiments on Batch Systems > ### Aliases: batchmark > > ### ** Examples > > tasks = list(mlr3::tsk("iris"), mlr3::tsk("sonar")) > learners = list(mlr3::lrn("classif.featureless"), mlr3::lrn("classif.rpart")) > resamplings = list(mlr3::rsmp("cv", folds = 3), mlr3::rsmp("holdout")) > > design = mlr3::benchmark_grid( + tasks = tasks, + learners = learners, + resamplings = resamplings + ) > > reg = batchtools::makeExperimentRegistry(NA) No readable configuration file found Created registry in '/tmp/RtmpU4NVGm/working_dir/RtmpWiZZe7/registry17a57e77454669' using cluster functions 'Interactive' > batchmark(design, reg = reg) Adding algorithm 'run_learner' Error in `[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", : attempt access index 8/8 in VECTOR_ELT Calls: batchmark -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.2.2
Check: tests
Result: ERROR Running ‘testthat.R’ [6s/11s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3batchmark") + test_check("mlr3batchmark") + } Loading required package: batchtools Saving _problems/test_batchmark-13.R Saving _problems/test_batchmark-42.R Saving _problems/test_batchmark-67.R Saving _problems/test_batchmark-92.R Saving _problems/test_batchmark-114.R Saving _problems/test_reduceResultsBatchmark-13.R Saving _problems/test_reduceResultsBatchmark-50.R [ FAIL 7 | WARN 0 | SKIP 0 | PASS 0 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_batchmark.R:13:3'): basic workflow ───────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:13:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:42:3'): parallel multicore ───────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:42:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:67:3'): failing jobs ─────────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:67:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:92:3'): marshaling ───────────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(...) at test_batchmark.R:92:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:114:3'): adding parameter values works ───────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:114:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_reduceResultsBatchmark.R:13:3'): reduceResultsBatchmark ──────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg, store_models = TRUE) at test_reduceResultsBatchmark.R:13:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_reduceResultsBatchmark.R:50:3'): warning is given when mlr3 versions mismatch ── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(...) at test_reduceResultsBatchmark.R:50:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 0 | SKIP 0 | PASS 0 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.2.2
Check: examples
Result: ERROR Running examples in ‘mlr3batchmark-Ex.R’ failed The error most likely occurred in: > ### Name: batchmark > ### Title: Benchmark Experiments on Batch Systems > ### Aliases: batchmark > > ### ** Examples > > tasks = list(mlr3::tsk("iris"), mlr3::tsk("sonar")) > learners = list(mlr3::lrn("classif.featureless"), mlr3::lrn("classif.rpart")) > resamplings = list(mlr3::rsmp("cv", folds = 3), mlr3::rsmp("holdout")) > > design = mlr3::benchmark_grid( + tasks = tasks, + learners = learners, + resamplings = resamplings + ) > > reg = batchtools::makeExperimentRegistry(NA) No readable configuration file found Created registry in '/tmp/RtmphNKjBj/working_dir/RtmpOePGkF/registry1c7e028a68fc3' using cluster functions 'Interactive' > batchmark(design, reg = reg) Adding algorithm 'run_learner' Error in `[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", : attempt access index 8/8 in VECTOR_ELT Calls: batchmark -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.2.2
Check: tests
Result: ERROR Running ‘testthat.R’ Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3batchmark") + test_check("mlr3batchmark") + } Loading required package: batchtools Saving _problems/test_batchmark-13.R Saving _problems/test_batchmark-42.R Saving _problems/test_batchmark-67.R Saving _problems/test_batchmark-92.R Saving _problems/test_batchmark-114.R Saving _problems/test_reduceResultsBatchmark-13.R Saving _problems/test_reduceResultsBatchmark-50.R [ FAIL 7 | WARN 0 | SKIP 0 | PASS 0 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_batchmark.R:13:3'): basic workflow ───────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:13:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:42:3'): parallel multicore ───────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:42:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:67:3'): failing jobs ─────────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:67:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:92:3'): marshaling ───────────────────────────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(...) at test_batchmark.R:92:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_batchmark.R:114:3'): adding parameter values works ───────────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg) at test_batchmark.R:114:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_reduceResultsBatchmark.R:13:3'): reduceResultsBatchmark ──────── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(design, reg = reg, store_models = TRUE) at test_reduceResultsBatchmark.R:13:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) ── Error ('test_reduceResultsBatchmark.R:50:3'): warning is given when mlr3 versions mismatch ── Error in ``[.data.table`(design, , `:=`("group", .GRP), by = c("task_hash", "resampling_hash"))`: attempt access index 8/8 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3batchmark::batchmark(...) at test_reduceResultsBatchmark.R:50:3 2. ├─design[, `:=`("group", .GRP), by = c("task_hash", "resampling_hash")] 3. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 0 | SKIP 0 | PASS 0 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package mlr3data

Current CRAN status: OK: 13

Package mlr3db

Current CRAN status: ERROR: 4, NOTE: 3, OK: 6

Version: 0.7.0
Check: tests
Result: ERROR Running ‘testthat.R’ [78s/112s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3db") + test_check("mlr3db") + } Loading required package: mlr3 Loading required namespace: RSQLite Loading required namespace: RSQLite Saving _problems/test_train_predict_dplyr-20.R Saving _problems/test_train_predict_duckdb-18.R [ FAIL 2 | WARN 0 | SKIP 3 | PASS 998 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • {polars} is not installed (3): 'test_as_polars_backend.R:1:1', 'test_polars.R:1:1', 'test_train_predict_polars.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_train_predict_dplyr.R:20:5'): resample works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_train_predict_dplyr.R:19:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, mlr3::rsmp("cv", folds = 3)) at test_train_predict_dplyr.R:20:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_train_predict_duckdb.R:18:5'): resample works ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_train_predict_duckdb.R:17:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, mlr3::rsmp("cv", folds = 3)) at test_train_predict_duckdb.R:18:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 0 | SKIP 3 | PASS 998 ] Error: ! Test failures. Warning message: call dbDisconnect() when finished working with a connection Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.7.0
Check: tests
Result: ERROR Running ‘testthat.R’ [56s/97s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3db") + test_check("mlr3db") + } Loading required package: mlr3 Loading required namespace: RSQLite Loading required namespace: RSQLite Saving _problems/test_train_predict_dplyr-20.R Saving _problems/test_train_predict_duckdb-18.R [ FAIL 2 | WARN 0 | SKIP 3 | PASS 998 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • {polars} is not installed (3): 'test_as_polars_backend.R:1:1', 'test_polars.R:1:1', 'test_train_predict_polars.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_train_predict_dplyr.R:20:5'): resample works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_train_predict_dplyr.R:19:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, mlr3::rsmp("cv", folds = 3)) at test_train_predict_dplyr.R:20:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_train_predict_duckdb.R:18:5'): resample works ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_train_predict_duckdb.R:17:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, mlr3::rsmp("cv", folds = 3)) at test_train_predict_duckdb.R:18:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 0 | SKIP 3 | PASS 998 ] Error: ! Test failures. Warning message: call dbDisconnect() when finished working with a connection Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.7.0
Check: tests
Result: ERROR Running ‘testthat.R’ [123s/260s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3db") + test_check("mlr3db") + } Loading required package: mlr3 Loading required namespace: RSQLite Loading required namespace: RSQLite Saving _problems/test_train_predict_dplyr-20.R Saving _problems/test_train_predict_duckdb-18.R [ FAIL 2 | WARN 0 | SKIP 3 | PASS 998 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • {polars} is not installed (3): 'test_as_polars_backend.R:1:1', 'test_polars.R:1:1', 'test_train_predict_polars.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_train_predict_dplyr.R:20:5'): resample works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_train_predict_dplyr.R:19:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, mlr3::rsmp("cv", folds = 3)) at test_train_predict_dplyr.R:20:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_train_predict_duckdb.R:18:5'): resample works ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_train_predict_duckdb.R:17:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, mlr3::rsmp("cv", folds = 3)) at test_train_predict_duckdb.R:18:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 0 | SKIP 3 | PASS 998 ] Error: ! Test failures. Warning message: call dbDisconnect() when finished working with a connection Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.7.0
Check: tests
Result: ERROR Running ‘testthat.R’ [113s/158s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3db") + test_check("mlr3db") + } Loading required package: mlr3 Loading required namespace: RSQLite Loading required namespace: RSQLite Saving _problems/test_train_predict_dplyr-20.R Saving _problems/test_train_predict_duckdb-18.R [ FAIL 2 | WARN 1 | SKIP 3 | PASS 998 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • {polars} is not installed (3): 'test_as_polars_backend.R:1:1', 'test_polars.R:1:1', 'test_train_predict_polars.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_train_predict_dplyr.R:20:5'): resample works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_train_predict_dplyr.R:19:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, mlr3::rsmp("cv", folds = 3)) at test_train_predict_dplyr.R:20:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_train_predict_duckdb.R:18:5'): resample works ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_future(...) at test_train_predict_duckdb.R:17:3 2. │ └─base::force(expr) 3. └─mlr3::resample(task, learner, mlr3::rsmp("cv", folds = 3)) at test_train_predict_duckdb.R:18:5 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) [ FAIL 2 | WARN 1 | SKIP 3 | PASS 998 ] Error: ! Test failures. Warning message: call dbDisconnect() when finished working with a connection Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.7.0
Check: package dependencies
Result: NOTE Package suggested but not available for checking: ‘polars’ Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Version: 0.7.0
Check: Rd cross-references
Result: NOTE Package unavailable to check Rd xrefs: ‘polars’ Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Package mlr3filters

Current CRAN status: ERROR: 4, OK: 9

Version: 0.9.0
Check: examples
Result: ERROR Running examples in ‘mlr3filters-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: mlr_filters_performance > ### Title: Predictive Performance Filter > ### Aliases: mlr_filters_performance FilterPerformance > > ### ** Examples > > if (requireNamespace("rpart")) { + task = mlr3::tsk("iris") + learner = mlr3::lrn("classif.rpart") + filter = flt("performance", learner = learner) + filter$calculate(task) + as.data.table(filter) + } INFO [04:33:52.610] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/1) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.9.0
Check: tests
Result: ERROR Running ‘testthat.R’ [52s/70s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3filters") + test_check("mlr3filters") + } Saving _problems/test_FilterPerformance-8.R Saving _problems/test_FilterPermutation-7.R Saving _problems/test_filter_classif-9.R Saving _problems/test_filter_classif-34.R [ FAIL 4 | WARN 0 | SKIP 3 | PASS 470 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • {mlr3proba} is not installed (2): 'test_FilterUnivariateCox.R:1:1', 'test_filter_surv.R:1:1' • {mlr3spatiotempcv} is not installed (1): 'test_mlr3spatiotempcv.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_FilterPerformance.R:8:3'): FilterPerformance ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_FilterPerformance.R:8:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_FilterPermutation.R:7:3'): FilterPermutation ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_FilterPermutation.R:7:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_classif.R:9:7'): all classif filters return correct filter values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_filter_classif.R:9:7 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_filter_classif.R:34:7'): filters throw errors on missing values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_filter_classif.R:34:7 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) [ FAIL 4 | WARN 0 | SKIP 3 | PASS 470 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.9.0
Check: examples
Result: ERROR Running examples in ‘mlr3filters-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: mlr_filters_performance > ### Title: Predictive Performance Filter > ### Aliases: mlr_filters_performance FilterPerformance > > ### ** Examples > > if (requireNamespace("rpart")) { + task = mlr3::tsk("iris") + learner = mlr3::lrn("classif.rpart") + filter = flt("performance", learner = learner) + filter$calculate(task) + as.data.table(filter) + } INFO [17:17:53.843] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/1) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.9.0
Check: tests
Result: ERROR Running ‘testthat.R’ [37s/59s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3filters") + test_check("mlr3filters") + } Saving _problems/test_FilterPerformance-8.R Saving _problems/test_FilterPermutation-7.R Saving _problems/test_filter_classif-9.R Saving _problems/test_filter_classif-34.R [ FAIL 4 | WARN 0 | SKIP 3 | PASS 470 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • {mlr3proba} is not installed (2): 'test_FilterUnivariateCox.R:1:1', 'test_filter_surv.R:1:1' • {mlr3spatiotempcv} is not installed (1): 'test_mlr3spatiotempcv.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_FilterPerformance.R:8:3'): FilterPerformance ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_FilterPerformance.R:8:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_FilterPermutation.R:7:3'): FilterPermutation ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_FilterPermutation.R:7:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_classif.R:9:7'): all classif filters return correct filter values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_filter_classif.R:9:7 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_filter_classif.R:34:7'): filters throw errors on missing values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_filter_classif.R:34:7 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) [ FAIL 4 | WARN 0 | SKIP 3 | PASS 470 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.9.0
Check: examples
Result: ERROR Running examples in ‘mlr3filters-Ex.R’ failed The error most likely occurred in: > ### Name: mlr_filters_performance > ### Title: Predictive Performance Filter > ### Aliases: mlr_filters_performance FilterPerformance > > ### ** Examples > > if (requireNamespace("rpart")) { + task = mlr3::tsk("iris") + learner = mlr3::lrn("classif.rpart") + filter = flt("performance", learner = learner) + filter$calculate(task) + as.data.table(filter) + } INFO [17:45:39.544] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/1) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.9.0
Check: tests
Result: ERROR Running ‘testthat.R’ [90s/178s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3filters") + test_check("mlr3filters") + } Saving _problems/test_FilterPerformance-8.R Saving _problems/test_FilterPermutation-7.R Saving _problems/test_filter_classif-9.R Saving _problems/test_filter_classif-34.R [ FAIL 4 | WARN 0 | SKIP 3 | PASS 470 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • {mlr3proba} is not installed (2): 'test_FilterUnivariateCox.R:1:1', 'test_filter_surv.R:1:1' • {mlr3spatiotempcv} is not installed (1): 'test_mlr3spatiotempcv.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_FilterPerformance.R:8:3'): FilterPerformance ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_FilterPerformance.R:8:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_FilterPermutation.R:7:3'): FilterPermutation ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_FilterPermutation.R:7:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_classif.R:9:7'): all classif filters return correct filter values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_filter_classif.R:9:7 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_filter_classif.R:34:7'): filters throw errors on missing values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_filter_classif.R:34:7 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) [ FAIL 4 | WARN 0 | SKIP 3 | PASS 470 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.9.0
Check: examples
Result: ERROR Running examples in ‘mlr3filters-Ex.R’ failed The error most likely occurred in: > ### Name: mlr_filters_performance > ### Title: Predictive Performance Filter > ### Aliases: mlr_filters_performance FilterPerformance > > ### ** Examples > > if (requireNamespace("rpart")) { + task = mlr3::tsk("iris") + learner = mlr3::lrn("classif.rpart") + filter = flt("performance", learner = learner) + filter$calculate(task) + as.data.table(filter) + } INFO [12:28:56.656] [mlr3] Applying learner 'classif.rpart' on task 'iris' (iter 1/1) Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.9.0
Check: tests
Result: ERROR Running ‘testthat.R’ [80s/128s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3filters") + test_check("mlr3filters") + } Saving _problems/test_FilterPerformance-8.R Saving _problems/test_FilterPermutation-7.R Saving _problems/test_filter_classif-9.R Saving _problems/test_filter_classif-34.R [ FAIL 4 | WARN 0 | SKIP 3 | PASS 470 ] ══ Skipped tests (3) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test_mlr3spatiotempcv.R:2:1' • {mlr3proba} is not installed (2): 'test_FilterUnivariateCox.R:1:1', 'test_filter_surv.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_FilterPerformance.R:8:3'): FilterPerformance ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_FilterPerformance.R:8:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_FilterPermutation.R:7:3'): FilterPermutation ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_FilterPermutation.R:7:3 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPermutation__.calculate(...) 5. └─mlr3::resample(task, self$learner, self$resampling) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_filter_classif.R:9:7'): all classif filters return correct filter values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_filter_classif.R:9:7 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_filter_classif.R:34:7'): filters throw errors on missing values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─f$calculate(task) at test_filter_classif.R:34:7 2. └─mlr3filters:::.__Filter__calculate(...) 3. └─private$.calculate(task, nfeat) 4. └─mlr3filters:::.__FilterPerformance__.calculate(...) 5. └─mlr3misc::map_dbl(...) 6. └─mlr3misc:::map_mold(.x, .f, NA_real_, ...) 7. └─base::vapply(.x, .f, FUN.VALUE = .value, USE.NAMES = FALSE, ...) 8. └─mlr3filters (local) FUN(X[[i]], ...) 9. └─mlr3::resample(task, self$learner, resampling, clone = character()) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) [ FAIL 4 | WARN 0 | SKIP 3 | PASS 470 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package mlr3fselect

Current CRAN status: ERROR: 4, OK: 9

Version: 1.5.0
Check: examples
Result: ERROR Running examples in ‘mlr3fselect-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: auto_fselector > ### Title: Function for Automatic Feature Selection > ### Aliases: auto_fselector > > ### ** Examples > > afs = auto_fselector( + fselector = fs("random_search"), + learner = lrn("classif.rpart"), + resampling = rsmp("holdout"), + measure = msr("classif.ce"), + term_evals = 4) > > afs$train(tsk("pima")) INFO [04:34:21.791] [bbotk] Starting to optimize 8 parameter(s) with '<FSelectorBatchRandomSearch>' and '<TerminatorEvals> [n_evals=4, k=0]' INFO [04:34:21.871] [bbotk] Evaluating 10 configuration(s) INFO [04:34:22.003] [mlr3] Running benchmark with 10 resampling iterations INFO [04:34:22.205] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:22.266] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:22.306] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:22.339] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:22.372] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:22.404] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:22.443] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:22.479] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:22.520] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:22.639] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:22.752] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.5.0
Check: tests
Result: ERROR Running ‘testthat.R’ [170s/259s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library(testthat) + library(checkmate) + library(mlr3fselect) + test_check("mlr3fselect") + } Loading required package: mlr3 Attaching package: 'data.table' The following object is masked from 'package:base': %notin% Saving _problems/test_ArchiveBatchFSelect-8.R Saving _problems/test_ArchiveBatchFSelect-58.R Saving _problems/test_ArchiveBatchFSelect-164.R Saving _problems/test_ArchiveBatchFSelect-204.R Saving _problems/test_ArchiveBatchFSelect-232.R Saving _problems/test_ArchiveBatchFSelect-260.R Saving _problems/test_AutoFSelector-137.R Saving _problems/test_AutoFSelector-166.R Saving _problems/test_AutoFSelector-211.R Saving _problems/test_FSelectInstanceMultiCrit-16.R Saving _problems/test_FSelectInstanceMultiCrit-29.R Saving _problems/test_FSelectInstanceMultiCrit-37.R Saving _problems/test_FSelectInstanceSingleCrit-16.R Saving _problems/test_FSelectInstanceSingleCrit-40.R Saving _problems/test_FSelectInstanceSingleCrit-48.R Saving _problems/test_FSelectInstanceSingleCrit-85.R Saving _problems/test_FSelectInstanceSingleCrit-111.R Saving _problems/test_FSelectInstanceSingleCrit-131.R Saving _problems/test_FSelectorBatchDesignPoints-8.R Saving _problems/test_FSelectorBatchDesignPoints-20.R Saving _problems/test_FSelectorExhaustiveSearch-2.R Saving _problems/test_FSelectorExhaustiveSearch-14.R Saving _problems/test_FSelectorExhaustiveSearch-23.R Saving _problems/test_FSelectorExhaustiveSearch-27.R Saving _problems/test_FSelectorGeneticSearch-4.R Saving _problems/test_FSelectorRFE-2.R Saving _problems/test_FSelectorRFE-11.R Saving _problems/test_FSelectorRFE-18.R Saving _problems/test_FSelectorRFE-27.R Saving _problems/test_FSelectorRFE-49.R Saving _problems/test_FSelectorRFE-63.R Saving _problems/test_FSelectorRFE-83.R Saving _problems/test_FSelectorRFE-131.R Saving _problems/test_FSelectorRFE-142.R Saving _problems/test_FSelectorRFE-161.R Saving _problems/test_FSelectorRFE-233.R Saving _problems/test_FSelectorRFE-290.R Saving _problems/test_FSelectorRFECV-12.R Saving _problems/test_FSelectorRFECV-32.R Saving _problems/test_FSelectorRFECV-61.R Saving _problems/test_FSelectorRFECV-118.R Saving _problems/test_FSelectorRandomSearch-2.R Saving _problems/test_FSelectorRandomSearch-6.R Saving _problems/test_FSelectorRandomSearch-12.R Saving _problems/test_FSelectorSequential-2.R Saving _problems/test_FSelectorSequential-11.R Saving _problems/test_FSelectorSequential-20.R Saving _problems/test_FSelectorSequential-26.R Saving _problems/test_FSelectorSequential-32.R Saving _problems/test_FSelectorSequential-39.R Saving _problems/test_FSelectorShadowVariableSearch-2.R Saving _problems/test_FSelectorShadowVariableSearch-14.R Saving _problems/test_FSelectorShadowVariableSearch-26.R Saving _problems/test_FSelectorShadowVariableSearch-35.R Saving _problems/test_FSelectorShadowVariableSearch-54.R Saving _problems/test_ObjectiveFSelect-15.R Saving _problems/test_ObjectiveFSelect-35.R Saving _problems/test_ObjectiveFSelect-54.R Saving _problems/test_ObjectiveFSelect-74.R Saving _problems/test_ObjectiveFSelect-126.R Saving _problems/test_ObjectiveFSelectAsync-15.R Saving _problems/test_ObjectiveFSelectAsync-37.R Saving _problems/test_ObjectiveFSelectAsync-61.R Saving _problems/test_ObjectiveFSelectAsync-85.R Saving _problems/test_embedded_ensemble_fselect-9.R Saving _problems/test_embedded_ensemble_fselect-74.R Saving _problems/test_ensemble_fselect-13.R Saving _problems/test_ensemble_fselect-108.R Saving _problems/test_ensemble_fselect-359.R Saving _problems/test_extract_inner_fselect_archives-3.R Saving _problems/test_extract_inner_fselect_archives-12.R Saving _problems/test_extract_inner_fselect_archives-24.R Saving _problems/test_extract_inner_fselect_archives-37.R Saving _problems/test_extract_inner_fselect_archives-50.R Saving _problems/test_extract_inner_fselect_archives-61.R Saving _problems/test_extract_inner_fselect_archives-70.R Saving _problems/test_extract_inner_fselect_archives-80.R Saving _problems/test_extract_inner_fselect_archives-92.R Saving _problems/test_extract_inner_fselect_archives-104.R Saving _problems/test_extract_inner_fselect_result-3.R Saving _problems/test_extract_inner_fselect_result-12.R Saving _problems/test_extract_inner_fselect_result-24.R Saving _problems/test_extract_inner_fselect_result-37.R Saving _problems/test_extract_inner_fselect_result-50.R Saving _problems/test_extract_inner_fselect_result-61.R Saving _problems/test_extract_inner_fselect_result-70.R Saving _problems/test_extract_inner_fselect_result-80.R Saving _problems/test_extract_inner_fselect_result-92.R Saving _problems/test_extract_inner_fselect_result-104.R Saving _problems/test_extract_inner_fselect_result-113.R Saving _problems/test_extract_inner_fselect_result-125.R Saving _problems/test_fselect-3.R Saving _problems/test_fselect-12.R Saving _problems/test_fselect-21.R Saving _problems/test_fselect_nested-4.R Saving _problems/test_mlr_callbacks-12.R Saving _problems/test_mlr_callbacks-32.R Saving _problems/test_mlr_callbacks-53.R Saving _problems/test_mlr_callbacks-73.R Saving _problems/test_mlr_callbacks-96.R [ FAIL 100 | WARN 27 | SKIP 52 | PASS 235 ] ══ Skipped tests (52) ══════════════════════════════════════════════════════════ • On CRAN (52): 'test_ArchiveAsyncFSelect.R:2:3', 'test_ArchiveAsyncFSelect.R:51:3', 'test_ArchiveAsyncFSelect.R:107:3', 'test_ArchiveAsyncFSelect.R:133:3', 'test_ArchiveAsyncFSelect.R:155:3', 'test_ArchiveAsyncFSelect.R:181:3', 'test_ArchiveAsyncFSelectFrozen.R:2:3', 'test_AutoFSelector.R:2:3', 'test_AutoFSelector.R:29:3', 'test_AutoFSelector.R:64:3', 'test_AutoFSelector.R:219:3', 'test_CallbackAsyncFSelect.R:4:3', 'test_CallbackAsyncFSelect.R:32:3', 'test_CallbackAsyncFSelect.R:62:3', 'test_CallbackAsyncFSelect.R:90:3', 'test_CallbackAsyncFSelect.R:120:3', 'test_CallbackAsyncFSelect.R:154:3', 'test_CallbackAsyncFSelect.R:181:3', 'test_CallbackAsyncFSelect.R:213:3', 'test_CallbackAsyncFSelect.R:242:3', 'test_CallbackAsyncFSelect.R:269:3', 'test_CallbackAsyncFSelect.R:298:3', 'test_CallbackAsyncFSelect.R:327:3', 'test_CallbackAsyncFSelect.R:354:3', 'test_CallbackAsyncFSelect.R:383:3', 'test_CallbackAsyncFSelect.R:419:3', 'test_CallbackAsyncFSelect.R:454:3', 'test_CallbackAsyncFSelect.R:488:3', 'test_FSelectInstanceAsyncMultiCrit.R:2:3', 'test_FSelectInstanceAsyncMultiCrit.R:30:3', 'test_FSelectInstanceAsyncMultiCrit.R:53:3', 'test_FSelectInstanceAsyncMultiCrit.R:77:3', 'test_FSelectInstanceAsyncMultiCrit.R:101:3', 'test_FSelectInstanceAsyncMultiCrit.R:129:3', 'test_FSelectInstanceAsyncSingleCrit.R:2:3', 'test_FSelectInstanceAsyncSingleCrit.R:29:3', 'test_FSelectInstanceAsyncSingleCrit.R:50:3', 'test_FSelectInstanceAsyncSingleCrit.R:73:3', 'test_FSelectInstanceAsyncSingleCrit.R:98:3', 'test_FSelectInstanceAsyncSingleCrit.R:124:3', 'test_FSelectorAsyncDesignPoints.R:2:3', 'test_FSelectorAsyncExhaustiveSearch.R:2:3', 'test_FSelectorAsyncRandomSearch.R:2:3', 'test_ObjectiveFSelectAsync.R:96:3', 'test_ObjectiveFSelectAsync.R:160:3', 'test_auto_fselector.R:24:3', 'test_auto_fselector.R:47:3', 'test_fsi_async.R:2:3', 'test_fsi_async.R:16:3', 'test_fsi_async.R:30:3', 'test_fsi_async.R:42:3', 'test_mlr_callbacks.R:108:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ArchiveBatchFSelect.R:2:3'): ArchiveBatchFSelect access methods work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:2:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:52:3'): ArchiveBatchFSelect as.data.table function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:52:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:157:3'): global ties method works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:157:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:198:3'): local ties method works when maximize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:198:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:226:3'): local ties method works when minimize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:226:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:254:3'): local ties method works with batches ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:254:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:137:3'): AutoFSelector works with GraphLearner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoFSelector.R:137:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<S3: AutoFSelector>`, task = `<S3: TaskRegr>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 21. └─inst$eval_batch(states) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:166:3'): AutoFSelector get_base_learner method works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─afs$train(tsk("pima")) at test_AutoFSelector.R:166:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<S3: AutoFSelector>`, task = `<S3: TaskClassif>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 21. └─inst$eval_batch(as.data.table(X)) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:211:3'): AutoFSelector hash works #647 in mlr3 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_AutoFSelector.R:211:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_FSelectInstanceMultiCrit.R:16:3'): eval_batch works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceMultiCrit.R:16:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceMultiCrit.R:29:3'): objective_function works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$objective_function(c(1, 1, 0, 0)) at test_FSelectInstanceMultiCrit.R:29:3 2. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 3. └─private$.objective_function(x, self, self$objective_multiplicator) 4. └─inst$eval_batch(xdt) 5. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 6. └─self$objective$eval_many(xss_trafoed) 7. └─bbotk:::.__Objective__eval_many(...) 8. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 9. │ └─base::eval.parent(expr, n = 1L) 10. │ └─base::eval(expr, p) 11. │ └─base::eval(expr, p) 12. └─private$.eval_many(xss = xss, resampling = `<list>`) 13. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 14. └─mlr3::benchmark(...) 15. └─ResultData$new(grid, data_extra, store_backends = store_backends) 16. └─mlr3 (local) initialize(...) 17. └─mlr3:::.__ResultData__initialize(...) 18. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceMultiCrit.R:37:3'): store_benchmark_result flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceMultiCrit.R:37:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:16:3'): eval_batch works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceSingleCrit.R:16:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:40:3'): objective_function works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$objective_function(c(1, 1, 0, 0)) at test_FSelectInstanceSingleCrit.R:40:3 2. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 3. └─private$.objective_function(x, self, self$objective_multiplicator) 4. └─inst$eval_batch(xdt) 5. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 6. └─self$objective$eval_many(xss_trafoed) 7. └─bbotk:::.__Objective__eval_many(...) 8. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 9. │ └─base::eval.parent(expr, n = 1L) 10. │ └─base::eval(expr, p) 11. │ └─base::eval(expr, p) 12. └─private$.eval_many(xss = xss, resampling = `<list>`) 13. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 14. └─mlr3::benchmark(...) 15. └─ResultData$new(grid, data_extra, store_backends = store_backends) 16. └─mlr3 (local) initialize(...) 17. └─mlr3:::.__ResultData__initialize(...) 18. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:48:3'): store_benchmark_result flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceSingleCrit.R:48:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:77:3'): always include variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectInstanceSingleCrit.R:77:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:103:3'): always include variables works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectInstanceSingleCrit.R:103:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:131:3'): objective contains no benchmark results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectInstanceSingleCrit.R:131:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 10. └─inst$eval_batch(as.data.table(X)) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorBatchDesignPoints.R:8:3'): default parameters work ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("design_points", design = design) at test_FSelectorBatchDesignPoints.R:8:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 14. └─instance$eval_batch(design[inds, ]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorBatchDesignPoints.R:20:3'): multi-crit works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("design_points", design = design) at test_FSelectorBatchDesignPoints.R:20:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 14. └─instance$eval_batch(design[inds, ]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:2:3'): default parameters work ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search") at test_FSelectorExhaustiveSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:14:3'): max_features parameter works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search", max_features = 2) at test_FSelectorExhaustiveSearch.R:14:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:23:3'): multi-crit works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("exhaustive_search") at test_FSelectorExhaustiveSearch.R:23:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:27:3'): batch_size parameter works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search", batch_size = 2) at test_FSelectorExhaustiveSearch.R:27:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorGeneticSearch.R:4:3'): default parameters work ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("genetic_search", term_evals = 10) at test_FSelectorGeneticSearch.R:4:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchGeneticSearch__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─genalg::rbga.bin(...) 17. └─bbotk (local) evalFunc(population[object, ]) 18. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 19. └─private$.objective_function(x, self, self$objective_multiplicator) 20. └─inst$eval_batch(xdt) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:2:3'): importance is stored in the archive ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", store_models = TRUE) at test_FSelectorRFE.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:11:3'): default parameters work ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", store_models = TRUE) at test_FSelectorRFE.R:11:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:18:3'): recursive parameter works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", recursive = FALSE, store_models = TRUE) at test_FSelectorRFE.R:18:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:27:3'): feature_fraction parameter works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_fraction = 0.9, store_models = TRUE) at test_FSelectorRFE.R:27:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:49:3'): feature_number parameter works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_number = 1, store_models = TRUE) at test_FSelectorRFE.R:49:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:63:3'): subset_size parameter works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", subset_sizes = c(3L, 1L), store_models = TRUE) at test_FSelectorRFE.R:63:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:83:3'): subset is full feature set works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_number = 4, store_models = TRUE) at test_FSelectorRFE.R:83:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:131:3'): rank_importance function works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_FSelectorRFE.R:131:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:142:3'): average_importance function works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_FSelectorRFE.R:142:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:154:3'): works without storing models ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectorRFE.R:154:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 11. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:233:3'): optimal features are selected with rank ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFE.R:233:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:290:3'): optimal features are selected with mean ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFE.R:290:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:12:3'): extra columns are stored in the archive ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:12:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:32:3'): resampling is converted ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:32:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:61:3'): default parameters work ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:61:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:118:3'): optimal features are selected ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:118:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:2:3'): default parameters work ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("random_search", batch_size = 5, term_evals = 10) at test_FSelectorRandomSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:6:3'): max_features parameter work ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("random_search", max_features = 1, term_evals = 10) at test_FSelectorRandomSearch.R:6:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:12:3'): multi-crit works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("random_search", batch_size = 5, term_evals = 10) at test_FSelectorRandomSearch.R:12:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:2:3'): default parameters works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:11:3'): sbs strategy works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", strategy = "sbs") at test_FSelectorSequential.R:11:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:20:3'): sfs strategy works with max_features parameter ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", max_features = 2) at test_FSelectorSequential.R:20:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:26:3'): sbs strategy works with max_features parameter ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", max_features = 2, strategy = "sbs") at test_FSelectorSequential.R:26:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:32:3'): optimization_path method works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:32:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:39:3'): optimization_path method works with included uhash ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:39:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:2:3'): default parameters work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("shadow_variable_search", store_models = TRUE) at test_FSelectorShadowVariableSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:14:3'): task is permuted ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:14:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:26:3'): first selected feature is a shadow variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_error(fselector$optimize(instance), regexp = "The first selected feature is a shadow variable.") at test_FSelectorShadowVariableSearch.R:26:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. └─fselector$optimize(instance) 8. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 16. └─inst$eval_batch(states) 17. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 18. └─self$objective$eval_many(xss_trafoed) 19. └─bbotk:::.__Objective__eval_many(...) 20. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 21. │ └─base::eval.parent(expr, n = 1L) 22. │ └─base::eval(expr, p) 23. │ └─base::eval(expr, p) 24. └─private$.eval_many(xss = xss, resampling = `<list>`) 25. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 26. └─mlr3::benchmark(...) 27. └─ResultData$new(grid, data_extra, store_backends = store_backends) 28. └─mlr3 (local) initialize(...) 29. └─mlr3:::.__ResultData__initialize(...) 30. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 31. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:35:3'): second selected feature is a shadow variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:35:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:54:3'): search is terminated by terminator works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:54:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:15:3'): ObjectiveFSelectBatch ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:15:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:35:3'): ObjectiveFSelectBatch works with multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:35:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:54:3'): ObjectiveFSelectBatch works with store_models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:54:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:67:5'): fast aggregation works ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ObjectiveFSelect.R:66:3 2. │ └─base::force(expr) 3. └─mlr3fselect::fselect(...) at test_ObjectiveFSelect.R:67:5 4. └─fselector$optimize(instance) 5. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(as.data.table(X)) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:119:3'): fast aggregation conditions work ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ObjectiveFSelect.R:119:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:15:3'): objective async works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:15:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:37:3'): store benchmark result works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:37:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:61:3'): store models works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:61:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:85:3'): rush objective with multiple measures works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:85:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_embedded_ensemble_fselect.R:4:5'): embedded efs works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_embedded_ensemble_fselect.R:3:3 2. │ └─base::force(expr) 3. └─mlr3fselect::embedded_ensemble_fselect(...) at test_embedded_ensemble_fselect.R:4:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_embedded_ensemble_fselect.R:69:5'): combine embedded efs results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_embedded_ensemble_fselect.R:68:3 2. │ └─base::force(expr) 3. └─mlr3fselect::embedded_ensemble_fselect(...) at test_embedded_ensemble_fselect.R:69:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_ensemble_fselect.R:4:5'): efs works ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ensemble_fselect.R:3:3 2. │ └─base::force(expr) 3. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:4:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─mlr3:::future_map(...) 6. └─future.apply::future_mapply(...) 7. └─future.apply:::future_xapply(...) 8. └─base::tryCatch(...) 9. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. └─base (local) tryCatchOne(...) 11. └─value[[3L]](cond) 12. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_ensemble_fselect.R:99:5'): efs works with rfe ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ensemble_fselect.R:98:3 2. │ └─base::force(expr) 3. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:99:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─mlr3:::future_map(...) 6. └─future.apply::future_mapply(...) 7. └─future.apply:::future_xapply(...) 8. └─base::tryCatch(...) 9. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. └─base (local) tryCatchOne(...) 11. └─value[[3L]](cond) 12. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_ensemble_fselect.R:349:3'): different callbacks can be set ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:349:3 2. └─mlr3::benchmark(design, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:2:3'): extract_inner_fselect_archives function works with resample and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_archives.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:11:3'): extract_inner_fselect_archives function works with resample and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_archives.R:11:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:24:3'): extract_inner_fselect_archives function works with benchmark and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:24:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:37:3'): extract_inner_fselect_archives function works with benchmark and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:37:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:50:3'): extract_inner_fselect_archives function works with multiple tasks ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:50:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:61:3'): extract_inner_fselect_archives function works with no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = FALSE) at test_extract_inner_fselect_archives.R:61:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:70:3'): extract_inner_fselect_archives function works with no instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = TRUE) at test_extract_inner_fselect_archives.R:70:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:80:3'): extract_inner_fselect_archives function works with benchmark and no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = FALSE) at test_extract_inner_fselect_archives.R:80:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:92:3'): extract_inner_fselect_archives function works with mixed store instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:92:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:104:3'): extract_inner_fselect_archives function works with autofselector and learner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:104:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:2:3'): extract_inner_fselect_results function works with resample and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:11:3'): extract_inner_fselect_results function works with resample and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:11:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:24:3'): extract_inner_fselect_results function works with benchmark and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:24:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:37:3'): extract_inner_fselect_results function works with benchmark and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:37:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:50:3'): extract_inner_fselect_results function works with multiple tasks ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:50:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:61:3'): extract_inner_fselect_results function works with no model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = FALSE) at test_extract_inner_fselect_result.R:61:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:70:3'): extract_inner_fselect_results function works no instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = TRUE) at test_extract_inner_fselect_result.R:70:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:80:3'): extract_inner_fselect_results function works with benchmark and no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = FALSE) at test_extract_inner_fselect_result.R:80:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:92:3'): extract_inner_fselect_results function works with mixed store instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:92:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:104:3'): extract_inner_fselect_results function works with learner and autotuner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:104:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:113:3'): extract_inner_fselect_results function works with resample and return of instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:113:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:125:3'): extract_inner_fselect_results function works with benchmark and return of instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:125:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_fselect.R:2:3'): fselect function works with single measure ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:2:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect.R:11:3'): fselect function works with multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:11:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect.R:20:3'): fselect function accepts string input for method ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:20:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect_nested.R:2:3'): fselect_nested function works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_fselect_nested.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_mlr_callbacks.R:4:3'): backup callback works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:4:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:23:3'): svm_rfe callbacks works ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:23:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 11. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:46:3'): one_se_rule callback works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:46:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 11. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 12. └─mlr3fselect (local) .f(.xi, ...) 13. └─inst$eval_batch(states[row_ids]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:65:3'): internal tuning callback works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:65:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:96:3'): internal tuning callback works with AutoFSelector ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─afs$train(tsk("pima")) at test_mlr_callbacks.R:96:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<S3: AutoFSelector>`, task = `<S3: TaskClassif>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 21. └─inst$eval_batch(as.data.table(X)) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) [ FAIL 100 | WARN 27 | SKIP 52 | PASS 235 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.5.0
Check: examples
Result: ERROR Running examples in ‘mlr3fselect-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: auto_fselector > ### Title: Function for Automatic Feature Selection > ### Aliases: auto_fselector > > ### ** Examples > > afs = auto_fselector( + fselector = fs("random_search"), + learner = lrn("classif.rpart"), + resampling = rsmp("holdout"), + measure = msr("classif.ce"), + term_evals = 4) > > afs$train(tsk("pima")) INFO [17:17:47.556] [bbotk] Starting to optimize 8 parameter(s) with '<FSelectorBatchRandomSearch>' and '<TerminatorEvals> [n_evals=4, k=0]' INFO [17:17:47.609] [bbotk] Evaluating 10 configuration(s) INFO [17:17:47.675] [mlr3] Running benchmark with 10 resampling iterations INFO [17:17:47.758] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:47.801] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:47.836] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:47.862] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:47.890] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:47.916] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:47.948] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:47.977] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:48.003] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:48.029] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:48.062] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.5.0
Check: tests
Result: ERROR Running ‘testthat.R’ [118s/169s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library(testthat) + library(checkmate) + library(mlr3fselect) + test_check("mlr3fselect") + } Loading required package: mlr3 Attaching package: 'data.table' The following object is masked from 'package:base': %notin% Saving _problems/test_ArchiveBatchFSelect-8.R Saving _problems/test_ArchiveBatchFSelect-58.R Saving _problems/test_ArchiveBatchFSelect-164.R Saving _problems/test_ArchiveBatchFSelect-204.R Saving _problems/test_ArchiveBatchFSelect-232.R Saving _problems/test_ArchiveBatchFSelect-260.R Saving _problems/test_AutoFSelector-137.R Saving _problems/test_AutoFSelector-166.R Saving _problems/test_AutoFSelector-211.R Saving _problems/test_FSelectInstanceMultiCrit-16.R Saving _problems/test_FSelectInstanceMultiCrit-29.R Saving _problems/test_FSelectInstanceMultiCrit-37.R Saving _problems/test_FSelectInstanceSingleCrit-16.R Saving _problems/test_FSelectInstanceSingleCrit-40.R Saving _problems/test_FSelectInstanceSingleCrit-48.R Saving _problems/test_FSelectInstanceSingleCrit-85.R Saving _problems/test_FSelectInstanceSingleCrit-111.R Saving _problems/test_FSelectInstanceSingleCrit-131.R Saving _problems/test_FSelectorBatchDesignPoints-8.R Saving _problems/test_FSelectorBatchDesignPoints-20.R Saving _problems/test_FSelectorExhaustiveSearch-2.R Saving _problems/test_FSelectorExhaustiveSearch-14.R Saving _problems/test_FSelectorExhaustiveSearch-23.R Saving _problems/test_FSelectorExhaustiveSearch-27.R Saving _problems/test_FSelectorGeneticSearch-4.R Saving _problems/test_FSelectorRFE-2.R Saving _problems/test_FSelectorRFE-11.R Saving _problems/test_FSelectorRFE-18.R Saving _problems/test_FSelectorRFE-27.R Saving _problems/test_FSelectorRFE-49.R Saving _problems/test_FSelectorRFE-63.R Saving _problems/test_FSelectorRFE-83.R Saving _problems/test_FSelectorRFE-131.R Saving _problems/test_FSelectorRFE-142.R Saving _problems/test_FSelectorRFE-161.R Saving _problems/test_FSelectorRFE-233.R Saving _problems/test_FSelectorRFE-290.R Saving _problems/test_FSelectorRFECV-12.R Saving _problems/test_FSelectorRFECV-32.R Saving _problems/test_FSelectorRFECV-61.R Saving _problems/test_FSelectorRFECV-118.R Saving _problems/test_FSelectorRandomSearch-2.R Saving _problems/test_FSelectorRandomSearch-6.R Saving _problems/test_FSelectorRandomSearch-12.R Saving _problems/test_FSelectorSequential-2.R Saving _problems/test_FSelectorSequential-11.R Saving _problems/test_FSelectorSequential-20.R Saving _problems/test_FSelectorSequential-26.R Saving _problems/test_FSelectorSequential-32.R Saving _problems/test_FSelectorSequential-39.R Saving _problems/test_FSelectorShadowVariableSearch-2.R Saving _problems/test_FSelectorShadowVariableSearch-14.R Saving _problems/test_FSelectorShadowVariableSearch-26.R Saving _problems/test_FSelectorShadowVariableSearch-35.R Saving _problems/test_FSelectorShadowVariableSearch-54.R Saving _problems/test_ObjectiveFSelect-15.R Saving _problems/test_ObjectiveFSelect-35.R Saving _problems/test_ObjectiveFSelect-54.R Saving _problems/test_ObjectiveFSelect-74.R Saving _problems/test_ObjectiveFSelect-126.R Saving _problems/test_ObjectiveFSelectAsync-15.R Saving _problems/test_ObjectiveFSelectAsync-37.R Saving _problems/test_ObjectiveFSelectAsync-61.R Saving _problems/test_ObjectiveFSelectAsync-85.R Saving _problems/test_embedded_ensemble_fselect-9.R Saving _problems/test_embedded_ensemble_fselect-74.R Saving _problems/test_ensemble_fselect-13.R Saving _problems/test_ensemble_fselect-108.R Saving _problems/test_ensemble_fselect-359.R Saving _problems/test_extract_inner_fselect_archives-3.R Saving _problems/test_extract_inner_fselect_archives-12.R Saving _problems/test_extract_inner_fselect_archives-24.R Saving _problems/test_extract_inner_fselect_archives-37.R Saving _problems/test_extract_inner_fselect_archives-50.R Saving _problems/test_extract_inner_fselect_archives-61.R Saving _problems/test_extract_inner_fselect_archives-70.R Saving _problems/test_extract_inner_fselect_archives-80.R Saving _problems/test_extract_inner_fselect_archives-92.R Saving _problems/test_extract_inner_fselect_archives-104.R Saving _problems/test_extract_inner_fselect_result-3.R Saving _problems/test_extract_inner_fselect_result-12.R Saving _problems/test_extract_inner_fselect_result-24.R Saving _problems/test_extract_inner_fselect_result-37.R Saving _problems/test_extract_inner_fselect_result-50.R Saving _problems/test_extract_inner_fselect_result-61.R Saving _problems/test_extract_inner_fselect_result-70.R Saving _problems/test_extract_inner_fselect_result-80.R Saving _problems/test_extract_inner_fselect_result-92.R Saving _problems/test_extract_inner_fselect_result-104.R Saving _problems/test_extract_inner_fselect_result-113.R Saving _problems/test_extract_inner_fselect_result-125.R Saving _problems/test_fselect-3.R Saving _problems/test_fselect-12.R Saving _problems/test_fselect-21.R Saving _problems/test_fselect_nested-4.R Saving _problems/test_mlr_callbacks-12.R Saving _problems/test_mlr_callbacks-32.R Saving _problems/test_mlr_callbacks-53.R Saving _problems/test_mlr_callbacks-73.R Saving _problems/test_mlr_callbacks-96.R [ FAIL 100 | WARN 27 | SKIP 52 | PASS 235 ] ══ Skipped tests (52) ══════════════════════════════════════════════════════════ • On CRAN (52): 'test_ArchiveAsyncFSelect.R:2:3', 'test_ArchiveAsyncFSelect.R:51:3', 'test_ArchiveAsyncFSelect.R:107:3', 'test_ArchiveAsyncFSelect.R:133:3', 'test_ArchiveAsyncFSelect.R:155:3', 'test_ArchiveAsyncFSelect.R:181:3', 'test_ArchiveAsyncFSelectFrozen.R:2:3', 'test_AutoFSelector.R:2:3', 'test_AutoFSelector.R:29:3', 'test_AutoFSelector.R:64:3', 'test_AutoFSelector.R:219:3', 'test_CallbackAsyncFSelect.R:4:3', 'test_CallbackAsyncFSelect.R:32:3', 'test_CallbackAsyncFSelect.R:62:3', 'test_CallbackAsyncFSelect.R:90:3', 'test_CallbackAsyncFSelect.R:120:3', 'test_CallbackAsyncFSelect.R:154:3', 'test_CallbackAsyncFSelect.R:181:3', 'test_CallbackAsyncFSelect.R:213:3', 'test_CallbackAsyncFSelect.R:242:3', 'test_CallbackAsyncFSelect.R:269:3', 'test_CallbackAsyncFSelect.R:298:3', 'test_CallbackAsyncFSelect.R:327:3', 'test_CallbackAsyncFSelect.R:354:3', 'test_CallbackAsyncFSelect.R:383:3', 'test_CallbackAsyncFSelect.R:419:3', 'test_CallbackAsyncFSelect.R:454:3', 'test_CallbackAsyncFSelect.R:488:3', 'test_FSelectInstanceAsyncMultiCrit.R:2:3', 'test_FSelectInstanceAsyncMultiCrit.R:30:3', 'test_FSelectInstanceAsyncMultiCrit.R:53:3', 'test_FSelectInstanceAsyncMultiCrit.R:77:3', 'test_FSelectInstanceAsyncMultiCrit.R:101:3', 'test_FSelectInstanceAsyncMultiCrit.R:129:3', 'test_FSelectInstanceAsyncSingleCrit.R:2:3', 'test_FSelectInstanceAsyncSingleCrit.R:29:3', 'test_FSelectInstanceAsyncSingleCrit.R:50:3', 'test_FSelectInstanceAsyncSingleCrit.R:73:3', 'test_FSelectInstanceAsyncSingleCrit.R:98:3', 'test_FSelectInstanceAsyncSingleCrit.R:124:3', 'test_FSelectorAsyncDesignPoints.R:2:3', 'test_FSelectorAsyncExhaustiveSearch.R:2:3', 'test_FSelectorAsyncRandomSearch.R:2:3', 'test_ObjectiveFSelectAsync.R:96:3', 'test_ObjectiveFSelectAsync.R:160:3', 'test_auto_fselector.R:24:3', 'test_auto_fselector.R:47:3', 'test_fsi_async.R:2:3', 'test_fsi_async.R:16:3', 'test_fsi_async.R:30:3', 'test_fsi_async.R:42:3', 'test_mlr_callbacks.R:108:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ArchiveBatchFSelect.R:2:3'): ArchiveBatchFSelect access methods work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:2:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:52:3'): ArchiveBatchFSelect as.data.table function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:52:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:157:3'): global ties method works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:157:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:198:3'): local ties method works when maximize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:198:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:226:3'): local ties method works when minimize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:226:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:254:3'): local ties method works with batches ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:254:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:137:3'): AutoFSelector works with GraphLearner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoFSelector.R:137:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<S3: AutoFSelector>`, task = `<S3: TaskRegr>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 21. └─inst$eval_batch(states) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:166:3'): AutoFSelector get_base_learner method works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─afs$train(tsk("pima")) at test_AutoFSelector.R:166:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<S3: AutoFSelector>`, task = `<S3: TaskClassif>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 21. └─inst$eval_batch(as.data.table(X)) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:211:3'): AutoFSelector hash works #647 in mlr3 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_AutoFSelector.R:211:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_FSelectInstanceMultiCrit.R:16:3'): eval_batch works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceMultiCrit.R:16:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceMultiCrit.R:29:3'): objective_function works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$objective_function(c(1, 1, 0, 0)) at test_FSelectInstanceMultiCrit.R:29:3 2. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 3. └─private$.objective_function(x, self, self$objective_multiplicator) 4. └─inst$eval_batch(xdt) 5. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 6. └─self$objective$eval_many(xss_trafoed) 7. └─bbotk:::.__Objective__eval_many(...) 8. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 9. │ └─base::eval.parent(expr, n = 1L) 10. │ └─base::eval(expr, p) 11. │ └─base::eval(expr, p) 12. └─private$.eval_many(xss = xss, resampling = `<list>`) 13. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 14. └─mlr3::benchmark(...) 15. └─ResultData$new(grid, data_extra, store_backends = store_backends) 16. └─mlr3 (local) initialize(...) 17. └─mlr3:::.__ResultData__initialize(...) 18. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceMultiCrit.R:37:3'): store_benchmark_result flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceMultiCrit.R:37:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:16:3'): eval_batch works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceSingleCrit.R:16:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:40:3'): objective_function works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$objective_function(c(1, 1, 0, 0)) at test_FSelectInstanceSingleCrit.R:40:3 2. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 3. └─private$.objective_function(x, self, self$objective_multiplicator) 4. └─inst$eval_batch(xdt) 5. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 6. └─self$objective$eval_many(xss_trafoed) 7. └─bbotk:::.__Objective__eval_many(...) 8. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 9. │ └─base::eval.parent(expr, n = 1L) 10. │ └─base::eval(expr, p) 11. │ └─base::eval(expr, p) 12. └─private$.eval_many(xss = xss, resampling = `<list>`) 13. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 14. └─mlr3::benchmark(...) 15. └─ResultData$new(grid, data_extra, store_backends = store_backends) 16. └─mlr3 (local) initialize(...) 17. └─mlr3:::.__ResultData__initialize(...) 18. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:48:3'): store_benchmark_result flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceSingleCrit.R:48:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:77:3'): always include variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectInstanceSingleCrit.R:77:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:103:3'): always include variables works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectInstanceSingleCrit.R:103:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:131:3'): objective contains no benchmark results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectInstanceSingleCrit.R:131:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 10. └─inst$eval_batch(as.data.table(X)) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorBatchDesignPoints.R:8:3'): default parameters work ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("design_points", design = design) at test_FSelectorBatchDesignPoints.R:8:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 14. └─instance$eval_batch(design[inds, ]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorBatchDesignPoints.R:20:3'): multi-crit works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("design_points", design = design) at test_FSelectorBatchDesignPoints.R:20:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 14. └─instance$eval_batch(design[inds, ]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:2:3'): default parameters work ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search") at test_FSelectorExhaustiveSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:14:3'): max_features parameter works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search", max_features = 2) at test_FSelectorExhaustiveSearch.R:14:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:23:3'): multi-crit works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("exhaustive_search") at test_FSelectorExhaustiveSearch.R:23:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:27:3'): batch_size parameter works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search", batch_size = 2) at test_FSelectorExhaustiveSearch.R:27:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorGeneticSearch.R:4:3'): default parameters work ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("genetic_search", term_evals = 10) at test_FSelectorGeneticSearch.R:4:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchGeneticSearch__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─genalg::rbga.bin(...) 17. └─bbotk (local) evalFunc(population[object, ]) 18. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 19. └─private$.objective_function(x, self, self$objective_multiplicator) 20. └─inst$eval_batch(xdt) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:2:3'): importance is stored in the archive ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", store_models = TRUE) at test_FSelectorRFE.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:11:3'): default parameters work ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", store_models = TRUE) at test_FSelectorRFE.R:11:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:18:3'): recursive parameter works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", recursive = FALSE, store_models = TRUE) at test_FSelectorRFE.R:18:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:27:3'): feature_fraction parameter works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_fraction = 0.9, store_models = TRUE) at test_FSelectorRFE.R:27:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:49:3'): feature_number parameter works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_number = 1, store_models = TRUE) at test_FSelectorRFE.R:49:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:63:3'): subset_size parameter works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", subset_sizes = c(3L, 1L), store_models = TRUE) at test_FSelectorRFE.R:63:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:83:3'): subset is full feature set works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_number = 4, store_models = TRUE) at test_FSelectorRFE.R:83:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:131:3'): rank_importance function works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_FSelectorRFE.R:131:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:142:3'): average_importance function works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_FSelectorRFE.R:142:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:154:3'): works without storing models ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectorRFE.R:154:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 11. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:233:3'): optimal features are selected with rank ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFE.R:233:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:290:3'): optimal features are selected with mean ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFE.R:290:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:12:3'): extra columns are stored in the archive ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:12:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:32:3'): resampling is converted ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:32:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:61:3'): default parameters work ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:61:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:118:3'): optimal features are selected ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:118:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:2:3'): default parameters work ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("random_search", batch_size = 5, term_evals = 10) at test_FSelectorRandomSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:6:3'): max_features parameter work ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("random_search", max_features = 1, term_evals = 10) at test_FSelectorRandomSearch.R:6:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:12:3'): multi-crit works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("random_search", batch_size = 5, term_evals = 10) at test_FSelectorRandomSearch.R:12:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:2:3'): default parameters works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:11:3'): sbs strategy works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", strategy = "sbs") at test_FSelectorSequential.R:11:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:20:3'): sfs strategy works with max_features parameter ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", max_features = 2) at test_FSelectorSequential.R:20:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:26:3'): sbs strategy works with max_features parameter ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", max_features = 2, strategy = "sbs") at test_FSelectorSequential.R:26:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:32:3'): optimization_path method works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:32:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:39:3'): optimization_path method works with included uhash ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:39:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:2:3'): default parameters work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("shadow_variable_search", store_models = TRUE) at test_FSelectorShadowVariableSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:14:3'): task is permuted ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:14:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:26:3'): first selected feature is a shadow variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_error(fselector$optimize(instance), regexp = "The first selected feature is a shadow variable.") at test_FSelectorShadowVariableSearch.R:26:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. └─fselector$optimize(instance) 8. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 16. └─inst$eval_batch(states) 17. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 18. └─self$objective$eval_many(xss_trafoed) 19. └─bbotk:::.__Objective__eval_many(...) 20. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 21. │ └─base::eval.parent(expr, n = 1L) 22. │ └─base::eval(expr, p) 23. │ └─base::eval(expr, p) 24. └─private$.eval_many(xss = xss, resampling = `<list>`) 25. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 26. └─mlr3::benchmark(...) 27. └─ResultData$new(grid, data_extra, store_backends = store_backends) 28. └─mlr3 (local) initialize(...) 29. └─mlr3:::.__ResultData__initialize(...) 30. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 31. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:35:3'): second selected feature is a shadow variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:35:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:54:3'): search is terminated by terminator works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:54:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:15:3'): ObjectiveFSelectBatch ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:15:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:35:3'): ObjectiveFSelectBatch works with multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:35:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:54:3'): ObjectiveFSelectBatch works with store_models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:54:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:67:5'): fast aggregation works ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ObjectiveFSelect.R:66:3 2. │ └─base::force(expr) 3. └─mlr3fselect::fselect(...) at test_ObjectiveFSelect.R:67:5 4. └─fselector$optimize(instance) 5. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(as.data.table(X)) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:119:3'): fast aggregation conditions work ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ObjectiveFSelect.R:119:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:15:3'): objective async works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:15:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:37:3'): store benchmark result works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:37:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:61:3'): store models works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:61:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:85:3'): rush objective with multiple measures works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:85:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_embedded_ensemble_fselect.R:4:5'): embedded efs works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_embedded_ensemble_fselect.R:3:3 2. │ └─base::force(expr) 3. └─mlr3fselect::embedded_ensemble_fselect(...) at test_embedded_ensemble_fselect.R:4:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_embedded_ensemble_fselect.R:69:5'): combine embedded efs results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_embedded_ensemble_fselect.R:68:3 2. │ └─base::force(expr) 3. └─mlr3fselect::embedded_ensemble_fselect(...) at test_embedded_ensemble_fselect.R:69:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_ensemble_fselect.R:4:5'): efs works ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ensemble_fselect.R:3:3 2. │ └─base::force(expr) 3. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:4:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─mlr3:::future_map(...) 6. └─future.apply::future_mapply(...) 7. └─future.apply:::future_xapply(...) 8. └─base::tryCatch(...) 9. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. └─base (local) tryCatchOne(...) 11. └─value[[3L]](cond) 12. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_ensemble_fselect.R:99:5'): efs works with rfe ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ensemble_fselect.R:98:3 2. │ └─base::force(expr) 3. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:99:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─mlr3:::future_map(...) 6. └─future.apply::future_mapply(...) 7. └─future.apply:::future_xapply(...) 8. └─base::tryCatch(...) 9. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. └─base (local) tryCatchOne(...) 11. └─value[[3L]](cond) 12. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_ensemble_fselect.R:349:3'): different callbacks can be set ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:349:3 2. └─mlr3::benchmark(design, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:2:3'): extract_inner_fselect_archives function works with resample and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_archives.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:11:3'): extract_inner_fselect_archives function works with resample and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_archives.R:11:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:24:3'): extract_inner_fselect_archives function works with benchmark and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:24:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:37:3'): extract_inner_fselect_archives function works with benchmark and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:37:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:50:3'): extract_inner_fselect_archives function works with multiple tasks ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:50:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:61:3'): extract_inner_fselect_archives function works with no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = FALSE) at test_extract_inner_fselect_archives.R:61:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:70:3'): extract_inner_fselect_archives function works with no instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = TRUE) at test_extract_inner_fselect_archives.R:70:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:80:3'): extract_inner_fselect_archives function works with benchmark and no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = FALSE) at test_extract_inner_fselect_archives.R:80:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:92:3'): extract_inner_fselect_archives function works with mixed store instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:92:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:104:3'): extract_inner_fselect_archives function works with autofselector and learner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:104:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:2:3'): extract_inner_fselect_results function works with resample and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:11:3'): extract_inner_fselect_results function works with resample and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:11:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:24:3'): extract_inner_fselect_results function works with benchmark and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:24:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:37:3'): extract_inner_fselect_results function works with benchmark and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:37:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:50:3'): extract_inner_fselect_results function works with multiple tasks ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:50:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:61:3'): extract_inner_fselect_results function works with no model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = FALSE) at test_extract_inner_fselect_result.R:61:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:70:3'): extract_inner_fselect_results function works no instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = TRUE) at test_extract_inner_fselect_result.R:70:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:80:3'): extract_inner_fselect_results function works with benchmark and no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = FALSE) at test_extract_inner_fselect_result.R:80:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:92:3'): extract_inner_fselect_results function works with mixed store instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:92:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:104:3'): extract_inner_fselect_results function works with learner and autotuner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:104:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:113:3'): extract_inner_fselect_results function works with resample and return of instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:113:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:125:3'): extract_inner_fselect_results function works with benchmark and return of instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:125:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_fselect.R:2:3'): fselect function works with single measure ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:2:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect.R:11:3'): fselect function works with multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:11:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect.R:20:3'): fselect function accepts string input for method ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:20:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect_nested.R:2:3'): fselect_nested function works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_fselect_nested.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_mlr_callbacks.R:4:3'): backup callback works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:4:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:23:3'): svm_rfe callbacks works ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:23:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 11. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:46:3'): one_se_rule callback works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:46:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 11. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 12. └─mlr3fselect (local) .f(.xi, ...) 13. └─inst$eval_batch(states[row_ids]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:65:3'): internal tuning callback works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:65:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:96:3'): internal tuning callback works with AutoFSelector ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─afs$train(tsk("pima")) at test_mlr_callbacks.R:96:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<S3: AutoFSelector>`, task = `<S3: TaskClassif>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 21. └─inst$eval_batch(as.data.table(X)) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) [ FAIL 100 | WARN 27 | SKIP 52 | PASS 235 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.5.0
Check: examples
Result: ERROR Running examples in ‘mlr3fselect-Ex.R’ failed The error most likely occurred in: > ### Name: auto_fselector > ### Title: Function for Automatic Feature Selection > ### Aliases: auto_fselector > > ### ** Examples > > afs = auto_fselector( + fselector = fs("random_search"), + learner = lrn("classif.rpart"), + resampling = rsmp("holdout"), + measure = msr("classif.ce"), + term_evals = 4) > > afs$train(tsk("pima")) INFO [17:46:14.464] [bbotk] Starting to optimize 8 parameter(s) with '<FSelectorBatchRandomSearch>' and '<TerminatorEvals> [n_evals=4, k=0]' INFO [17:46:14.838] [bbotk] Evaluating 10 configuration(s) INFO [17:46:15.200] [mlr3] Running benchmark with 10 resampling iterations INFO [17:46:15.561] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:46:15.701] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:46:15.832] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:46:15.954] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:46:16.084] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:46:16.240] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:46:16.422] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:46:16.547] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:46:16.688] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:46:16.801] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:46:16.940] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.5.0
Check: tests
Result: ERROR Running ‘testthat.R’ [258s/495s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library(testthat) + library(checkmate) + library(mlr3fselect) + test_check("mlr3fselect") + } Loading required package: mlr3 Attaching package: 'data.table' The following object is masked from 'package:base': %notin% Saving _problems/test_ArchiveBatchFSelect-8.R Saving _problems/test_ArchiveBatchFSelect-58.R Saving _problems/test_ArchiveBatchFSelect-164.R Saving _problems/test_ArchiveBatchFSelect-204.R Saving _problems/test_ArchiveBatchFSelect-232.R Saving _problems/test_ArchiveBatchFSelect-260.R Saving _problems/test_AutoFSelector-137.R Saving _problems/test_AutoFSelector-166.R Saving _problems/test_AutoFSelector-211.R Saving _problems/test_FSelectInstanceMultiCrit-16.R Saving _problems/test_FSelectInstanceMultiCrit-29.R Saving _problems/test_FSelectInstanceMultiCrit-37.R Saving _problems/test_FSelectInstanceSingleCrit-16.R Saving _problems/test_FSelectInstanceSingleCrit-40.R Saving _problems/test_FSelectInstanceSingleCrit-48.R Saving _problems/test_FSelectInstanceSingleCrit-85.R Saving _problems/test_FSelectInstanceSingleCrit-111.R Saving _problems/test_FSelectInstanceSingleCrit-131.R Saving _problems/test_FSelectorBatchDesignPoints-8.R Saving _problems/test_FSelectorBatchDesignPoints-20.R Saving _problems/test_FSelectorExhaustiveSearch-2.R Saving _problems/test_FSelectorExhaustiveSearch-14.R Saving _problems/test_FSelectorExhaustiveSearch-23.R Saving _problems/test_FSelectorExhaustiveSearch-27.R Saving _problems/test_FSelectorGeneticSearch-4.R Saving _problems/test_FSelectorRFE-2.R Saving _problems/test_FSelectorRFE-11.R Saving _problems/test_FSelectorRFE-18.R Saving _problems/test_FSelectorRFE-27.R Saving _problems/test_FSelectorRFE-49.R Saving _problems/test_FSelectorRFE-63.R Saving _problems/test_FSelectorRFE-83.R Saving _problems/test_FSelectorRFE-131.R Saving _problems/test_FSelectorRFE-142.R Saving _problems/test_FSelectorRFE-161.R Saving _problems/test_FSelectorRFE-233.R Saving _problems/test_FSelectorRFE-290.R Saving _problems/test_FSelectorRFECV-12.R Saving _problems/test_FSelectorRFECV-32.R Saving _problems/test_FSelectorRFECV-61.R Saving _problems/test_FSelectorRFECV-118.R Saving _problems/test_FSelectorRandomSearch-2.R Saving _problems/test_FSelectorRandomSearch-6.R Saving _problems/test_FSelectorRandomSearch-12.R Saving _problems/test_FSelectorSequential-2.R Saving _problems/test_FSelectorSequential-11.R Saving _problems/test_FSelectorSequential-20.R Saving _problems/test_FSelectorSequential-26.R Saving _problems/test_FSelectorSequential-32.R Saving _problems/test_FSelectorSequential-39.R Saving _problems/test_FSelectorShadowVariableSearch-2.R Saving _problems/test_FSelectorShadowVariableSearch-14.R Saving _problems/test_FSelectorShadowVariableSearch-26.R Saving _problems/test_FSelectorShadowVariableSearch-35.R Saving _problems/test_FSelectorShadowVariableSearch-54.R Saving _problems/test_ObjectiveFSelect-15.R Saving _problems/test_ObjectiveFSelect-35.R Saving _problems/test_ObjectiveFSelect-54.R Saving _problems/test_ObjectiveFSelect-74.R Saving _problems/test_ObjectiveFSelect-126.R Saving _problems/test_ObjectiveFSelectAsync-15.R Saving _problems/test_ObjectiveFSelectAsync-37.R Saving _problems/test_ObjectiveFSelectAsync-61.R Saving _problems/test_ObjectiveFSelectAsync-85.R Saving _problems/test_embedded_ensemble_fselect-9.R Saving _problems/test_embedded_ensemble_fselect-74.R Saving _problems/test_ensemble_fselect-13.R Saving _problems/test_ensemble_fselect-108.R Saving _problems/test_ensemble_fselect-359.R Saving _problems/test_extract_inner_fselect_archives-3.R Saving _problems/test_extract_inner_fselect_archives-12.R Saving _problems/test_extract_inner_fselect_archives-24.R Saving _problems/test_extract_inner_fselect_archives-37.R Saving _problems/test_extract_inner_fselect_archives-50.R Saving _problems/test_extract_inner_fselect_archives-61.R Saving _problems/test_extract_inner_fselect_archives-70.R Saving _problems/test_extract_inner_fselect_archives-80.R Saving _problems/test_extract_inner_fselect_archives-92.R Saving _problems/test_extract_inner_fselect_archives-104.R Saving _problems/test_extract_inner_fselect_result-3.R Saving _problems/test_extract_inner_fselect_result-12.R Saving _problems/test_extract_inner_fselect_result-24.R Saving _problems/test_extract_inner_fselect_result-37.R Saving _problems/test_extract_inner_fselect_result-50.R Saving _problems/test_extract_inner_fselect_result-61.R Saving _problems/test_extract_inner_fselect_result-70.R Saving _problems/test_extract_inner_fselect_result-80.R Saving _problems/test_extract_inner_fselect_result-92.R Saving _problems/test_extract_inner_fselect_result-104.R Saving _problems/test_extract_inner_fselect_result-113.R Saving _problems/test_extract_inner_fselect_result-125.R Saving _problems/test_fselect-3.R Saving _problems/test_fselect-12.R Saving _problems/test_fselect-21.R Saving _problems/test_fselect_nested-4.R Saving _problems/test_mlr_callbacks-12.R Saving _problems/test_mlr_callbacks-32.R Saving _problems/test_mlr_callbacks-53.R Saving _problems/test_mlr_callbacks-73.R Saving _problems/test_mlr_callbacks-96.R [ FAIL 100 | WARN 27 | SKIP 52 | PASS 235 ] ══ Skipped tests (52) ══════════════════════════════════════════════════════════ • On CRAN (52): 'test_ArchiveAsyncFSelect.R:2:3', 'test_ArchiveAsyncFSelect.R:51:3', 'test_ArchiveAsyncFSelect.R:107:3', 'test_ArchiveAsyncFSelect.R:133:3', 'test_ArchiveAsyncFSelect.R:155:3', 'test_ArchiveAsyncFSelect.R:181:3', 'test_ArchiveAsyncFSelectFrozen.R:2:3', 'test_AutoFSelector.R:2:3', 'test_AutoFSelector.R:29:3', 'test_AutoFSelector.R:64:3', 'test_AutoFSelector.R:219:3', 'test_CallbackAsyncFSelect.R:4:3', 'test_CallbackAsyncFSelect.R:32:3', 'test_CallbackAsyncFSelect.R:62:3', 'test_CallbackAsyncFSelect.R:90:3', 'test_CallbackAsyncFSelect.R:120:3', 'test_CallbackAsyncFSelect.R:154:3', 'test_CallbackAsyncFSelect.R:181:3', 'test_CallbackAsyncFSelect.R:213:3', 'test_CallbackAsyncFSelect.R:242:3', 'test_CallbackAsyncFSelect.R:269:3', 'test_CallbackAsyncFSelect.R:298:3', 'test_CallbackAsyncFSelect.R:327:3', 'test_CallbackAsyncFSelect.R:354:3', 'test_CallbackAsyncFSelect.R:383:3', 'test_CallbackAsyncFSelect.R:419:3', 'test_CallbackAsyncFSelect.R:454:3', 'test_CallbackAsyncFSelect.R:488:3', 'test_FSelectInstanceAsyncMultiCrit.R:2:3', 'test_FSelectInstanceAsyncMultiCrit.R:30:3', 'test_FSelectInstanceAsyncMultiCrit.R:53:3', 'test_FSelectInstanceAsyncMultiCrit.R:77:3', 'test_FSelectInstanceAsyncMultiCrit.R:101:3', 'test_FSelectInstanceAsyncMultiCrit.R:129:3', 'test_FSelectInstanceAsyncSingleCrit.R:2:3', 'test_FSelectInstanceAsyncSingleCrit.R:29:3', 'test_FSelectInstanceAsyncSingleCrit.R:50:3', 'test_FSelectInstanceAsyncSingleCrit.R:73:3', 'test_FSelectInstanceAsyncSingleCrit.R:98:3', 'test_FSelectInstanceAsyncSingleCrit.R:124:3', 'test_FSelectorAsyncDesignPoints.R:2:3', 'test_FSelectorAsyncExhaustiveSearch.R:2:3', 'test_FSelectorAsyncRandomSearch.R:2:3', 'test_ObjectiveFSelectAsync.R:96:3', 'test_ObjectiveFSelectAsync.R:160:3', 'test_auto_fselector.R:24:3', 'test_auto_fselector.R:47:3', 'test_fsi_async.R:2:3', 'test_fsi_async.R:16:3', 'test_fsi_async.R:30:3', 'test_fsi_async.R:42:3', 'test_mlr_callbacks.R:108:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ArchiveBatchFSelect.R:2:3'): ArchiveBatchFSelect access methods work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:2:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:52:3'): ArchiveBatchFSelect as.data.table function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:52:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:157:3'): global ties method works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:157:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:198:3'): local ties method works when maximize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:198:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:226:3'): local ties method works when minimize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:226:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:254:3'): local ties method works with batches ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:254:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:137:3'): AutoFSelector works with GraphLearner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoFSelector.R:137:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<S3: AutoFSelector>`, task = `<S3: TaskRegr>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 21. └─inst$eval_batch(states) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:166:3'): AutoFSelector get_base_learner method works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─afs$train(tsk("pima")) at test_AutoFSelector.R:166:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<S3: AutoFSelector>`, task = `<S3: TaskClassif>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 21. └─inst$eval_batch(as.data.table(X)) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:211:3'): AutoFSelector hash works #647 in mlr3 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_AutoFSelector.R:211:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_FSelectInstanceMultiCrit.R:16:3'): eval_batch works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceMultiCrit.R:16:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceMultiCrit.R:29:3'): objective_function works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$objective_function(c(1, 1, 0, 0)) at test_FSelectInstanceMultiCrit.R:29:3 2. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 3. └─private$.objective_function(x, self, self$objective_multiplicator) 4. └─inst$eval_batch(xdt) 5. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 6. └─self$objective$eval_many(xss_trafoed) 7. └─bbotk:::.__Objective__eval_many(...) 8. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 9. │ └─base::eval.parent(expr, n = 1L) 10. │ └─base::eval(expr, p) 11. │ └─base::eval(expr, p) 12. └─private$.eval_many(xss = xss, resampling = `<list>`) 13. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 14. └─mlr3::benchmark(...) 15. └─ResultData$new(grid, data_extra, store_backends = store_backends) 16. └─mlr3 (local) initialize(...) 17. └─mlr3:::.__ResultData__initialize(...) 18. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceMultiCrit.R:37:3'): store_benchmark_result flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceMultiCrit.R:37:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:16:3'): eval_batch works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceSingleCrit.R:16:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:40:3'): objective_function works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$objective_function(c(1, 1, 0, 0)) at test_FSelectInstanceSingleCrit.R:40:3 2. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 3. └─private$.objective_function(x, self, self$objective_multiplicator) 4. └─inst$eval_batch(xdt) 5. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 6. └─self$objective$eval_many(xss_trafoed) 7. └─bbotk:::.__Objective__eval_many(...) 8. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 9. │ └─base::eval.parent(expr, n = 1L) 10. │ └─base::eval(expr, p) 11. │ └─base::eval(expr, p) 12. └─private$.eval_many(xss = xss, resampling = `<list>`) 13. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 14. └─mlr3::benchmark(...) 15. └─ResultData$new(grid, data_extra, store_backends = store_backends) 16. └─mlr3 (local) initialize(...) 17. └─mlr3:::.__ResultData__initialize(...) 18. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:48:3'): store_benchmark_result flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceSingleCrit.R:48:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:77:3'): always include variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectInstanceSingleCrit.R:77:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:103:3'): always include variables works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectInstanceSingleCrit.R:103:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:131:3'): objective contains no benchmark results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectInstanceSingleCrit.R:131:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 10. └─inst$eval_batch(as.data.table(X)) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorBatchDesignPoints.R:8:3'): default parameters work ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("design_points", design = design) at test_FSelectorBatchDesignPoints.R:8:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 14. └─instance$eval_batch(design[inds, ]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorBatchDesignPoints.R:20:3'): multi-crit works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("design_points", design = design) at test_FSelectorBatchDesignPoints.R:20:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 14. └─instance$eval_batch(design[inds, ]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:2:3'): default parameters work ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search") at test_FSelectorExhaustiveSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:14:3'): max_features parameter works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search", max_features = 2) at test_FSelectorExhaustiveSearch.R:14:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:23:3'): multi-crit works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("exhaustive_search") at test_FSelectorExhaustiveSearch.R:23:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:27:3'): batch_size parameter works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search", batch_size = 2) at test_FSelectorExhaustiveSearch.R:27:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorGeneticSearch.R:4:3'): default parameters work ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("genetic_search", term_evals = 10) at test_FSelectorGeneticSearch.R:4:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchGeneticSearch__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─genalg::rbga.bin(...) 17. └─bbotk (local) evalFunc(population[object, ]) 18. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 19. └─private$.objective_function(x, self, self$objective_multiplicator) 20. └─inst$eval_batch(xdt) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:2:3'): importance is stored in the archive ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", store_models = TRUE) at test_FSelectorRFE.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:11:3'): default parameters work ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", store_models = TRUE) at test_FSelectorRFE.R:11:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:18:3'): recursive parameter works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", recursive = FALSE, store_models = TRUE) at test_FSelectorRFE.R:18:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:27:3'): feature_fraction parameter works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_fraction = 0.9, store_models = TRUE) at test_FSelectorRFE.R:27:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:49:3'): feature_number parameter works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_number = 1, store_models = TRUE) at test_FSelectorRFE.R:49:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:63:3'): subset_size parameter works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", subset_sizes = c(3L, 1L), store_models = TRUE) at test_FSelectorRFE.R:63:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:83:3'): subset is full feature set works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_number = 4, store_models = TRUE) at test_FSelectorRFE.R:83:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:131:3'): rank_importance function works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_FSelectorRFE.R:131:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:142:3'): average_importance function works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_FSelectorRFE.R:142:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:154:3'): works without storing models ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectorRFE.R:154:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 11. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:233:3'): optimal features are selected with rank ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFE.R:233:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:290:3'): optimal features are selected with mean ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFE.R:290:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:12:3'): extra columns are stored in the archive ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:12:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:32:3'): resampling is converted ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:32:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:61:3'): default parameters work ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:61:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:118:3'): optimal features are selected ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:118:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:2:3'): default parameters work ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("random_search", batch_size = 5, term_evals = 10) at test_FSelectorRandomSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:6:3'): max_features parameter work ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("random_search", max_features = 1, term_evals = 10) at test_FSelectorRandomSearch.R:6:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:12:3'): multi-crit works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("random_search", batch_size = 5, term_evals = 10) at test_FSelectorRandomSearch.R:12:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:2:3'): default parameters works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:11:3'): sbs strategy works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", strategy = "sbs") at test_FSelectorSequential.R:11:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:20:3'): sfs strategy works with max_features parameter ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", max_features = 2) at test_FSelectorSequential.R:20:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:26:3'): sbs strategy works with max_features parameter ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", max_features = 2, strategy = "sbs") at test_FSelectorSequential.R:26:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:32:3'): optimization_path method works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:32:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:39:3'): optimization_path method works with included uhash ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:39:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:2:3'): default parameters work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("shadow_variable_search", store_models = TRUE) at test_FSelectorShadowVariableSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:14:3'): task is permuted ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:14:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:26:3'): first selected feature is a shadow variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_error(fselector$optimize(instance), regexp = "The first selected feature is a shadow variable.") at test_FSelectorShadowVariableSearch.R:26:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. └─fselector$optimize(instance) 8. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 16. └─inst$eval_batch(states) 17. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 18. └─self$objective$eval_many(xss_trafoed) 19. └─bbotk:::.__Objective__eval_many(...) 20. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 21. │ └─base::eval.parent(expr, n = 1L) 22. │ └─base::eval(expr, p) 23. │ └─base::eval(expr, p) 24. └─private$.eval_many(xss = xss, resampling = `<list>`) 25. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 26. └─mlr3::benchmark(...) 27. └─ResultData$new(grid, data_extra, store_backends = store_backends) 28. └─mlr3 (local) initialize(...) 29. └─mlr3:::.__ResultData__initialize(...) 30. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 31. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:35:3'): second selected feature is a shadow variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:35:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:54:3'): search is terminated by terminator works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:54:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:15:3'): ObjectiveFSelectBatch ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:15:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:35:3'): ObjectiveFSelectBatch works with multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:35:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:54:3'): ObjectiveFSelectBatch works with store_models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:54:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:67:5'): fast aggregation works ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ObjectiveFSelect.R:66:3 2. │ └─base::force(expr) 3. └─mlr3fselect::fselect(...) at test_ObjectiveFSelect.R:67:5 4. └─fselector$optimize(instance) 5. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(as.data.table(X)) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:119:3'): fast aggregation conditions work ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ObjectiveFSelect.R:119:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:15:3'): objective async works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:15:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:37:3'): store benchmark result works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:37:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:61:3'): store models works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:61:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:85:3'): rush objective with multiple measures works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:85:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_embedded_ensemble_fselect.R:4:5'): embedded efs works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_embedded_ensemble_fselect.R:3:3 2. │ └─base::force(expr) 3. └─mlr3fselect::embedded_ensemble_fselect(...) at test_embedded_ensemble_fselect.R:4:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_embedded_ensemble_fselect.R:69:5'): combine embedded efs results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_embedded_ensemble_fselect.R:68:3 2. │ └─base::force(expr) 3. └─mlr3fselect::embedded_ensemble_fselect(...) at test_embedded_ensemble_fselect.R:69:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_ensemble_fselect.R:4:5'): efs works ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ensemble_fselect.R:3:3 2. │ └─base::force(expr) 3. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:4:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─mlr3:::future_map(...) 6. └─future.apply::future_mapply(...) 7. └─future.apply:::future_xapply(...) 8. └─base::tryCatch(...) 9. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. └─base (local) tryCatchOne(...) 11. └─value[[3L]](cond) 12. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_ensemble_fselect.R:99:5'): efs works with rfe ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ensemble_fselect.R:98:3 2. │ └─base::force(expr) 3. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:99:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─mlr3:::future_map(...) 6. └─future.apply::future_mapply(...) 7. └─future.apply:::future_xapply(...) 8. └─base::tryCatch(...) 9. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. └─base (local) tryCatchOne(...) 11. └─value[[3L]](cond) 12. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_ensemble_fselect.R:349:3'): different callbacks can be set ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:349:3 2. └─mlr3::benchmark(design, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:2:3'): extract_inner_fselect_archives function works with resample and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_archives.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:11:3'): extract_inner_fselect_archives function works with resample and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_archives.R:11:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:24:3'): extract_inner_fselect_archives function works with benchmark and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:24:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:37:3'): extract_inner_fselect_archives function works with benchmark and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:37:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:50:3'): extract_inner_fselect_archives function works with multiple tasks ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:50:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:61:3'): extract_inner_fselect_archives function works with no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = FALSE) at test_extract_inner_fselect_archives.R:61:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:70:3'): extract_inner_fselect_archives function works with no instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = TRUE) at test_extract_inner_fselect_archives.R:70:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:80:3'): extract_inner_fselect_archives function works with benchmark and no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = FALSE) at test_extract_inner_fselect_archives.R:80:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:92:3'): extract_inner_fselect_archives function works with mixed store instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:92:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:104:3'): extract_inner_fselect_archives function works with autofselector and learner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:104:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:2:3'): extract_inner_fselect_results function works with resample and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:11:3'): extract_inner_fselect_results function works with resample and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:11:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:24:3'): extract_inner_fselect_results function works with benchmark and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:24:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:37:3'): extract_inner_fselect_results function works with benchmark and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:37:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:50:3'): extract_inner_fselect_results function works with multiple tasks ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:50:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:61:3'): extract_inner_fselect_results function works with no model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = FALSE) at test_extract_inner_fselect_result.R:61:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:70:3'): extract_inner_fselect_results function works no instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = TRUE) at test_extract_inner_fselect_result.R:70:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:80:3'): extract_inner_fselect_results function works with benchmark and no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = FALSE) at test_extract_inner_fselect_result.R:80:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:92:3'): extract_inner_fselect_results function works with mixed store instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:92:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:104:3'): extract_inner_fselect_results function works with learner and autotuner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:104:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:113:3'): extract_inner_fselect_results function works with resample and return of instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:113:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:125:3'): extract_inner_fselect_results function works with benchmark and return of instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:125:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_fselect.R:2:3'): fselect function works with single measure ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:2:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect.R:11:3'): fselect function works with multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:11:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect.R:20:3'): fselect function accepts string input for method ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:20:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect_nested.R:2:3'): fselect_nested function works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_fselect_nested.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_mlr_callbacks.R:4:3'): backup callback works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:4:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:23:3'): svm_rfe callbacks works ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:23:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 11. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:46:3'): one_se_rule callback works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:46:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 11. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 12. └─mlr3fselect (local) .f(.xi, ...) 13. └─inst$eval_batch(states[row_ids]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:65:3'): internal tuning callback works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:65:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:96:3'): internal tuning callback works with AutoFSelector ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─afs$train(tsk("pima")) at test_mlr_callbacks.R:96:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<S3: AutoFSelector>`, task = `<S3: TaskClassif>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 21. └─inst$eval_batch(as.data.table(X)) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) [ FAIL 100 | WARN 27 | SKIP 52 | PASS 235 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.5.0
Check: examples
Result: ERROR Running examples in ‘mlr3fselect-Ex.R’ failed The error most likely occurred in: > ### Name: auto_fselector > ### Title: Function for Automatic Feature Selection > ### Aliases: auto_fselector > > ### ** Examples > > afs = auto_fselector( + fselector = fs("random_search"), + learner = lrn("classif.rpart"), + resampling = rsmp("holdout"), + measure = msr("classif.ce"), + term_evals = 4) > > afs$train(tsk("pima")) INFO [12:29:22.914] [bbotk] Starting to optimize 8 parameter(s) with '<FSelectorBatchRandomSearch>' and '<TerminatorEvals> [n_evals=4, k=0]' INFO [12:29:23.023] [bbotk] Evaluating 10 configuration(s) INFO [12:29:23.187] [mlr3] Running benchmark with 10 resampling iterations INFO [12:29:23.487] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:29:23.676] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:29:23.785] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:29:23.840] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:29:23.905] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:29:23.970] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:29:24.037] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:29:24.095] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:29:24.152] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:29:24.235] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:29:24.306] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.5.0
Check: tests
Result: ERROR Running ‘testthat.R’ [232s/305s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library(testthat) + library(checkmate) + library(mlr3fselect) + test_check("mlr3fselect") + } Loading required package: mlr3 Attaching package: 'data.table' The following object is masked from 'package:base': %notin% Saving _problems/test_ArchiveBatchFSelect-8.R Saving _problems/test_ArchiveBatchFSelect-58.R Saving _problems/test_ArchiveBatchFSelect-164.R Saving _problems/test_ArchiveBatchFSelect-204.R Saving _problems/test_ArchiveBatchFSelect-232.R Saving _problems/test_ArchiveBatchFSelect-260.R Saving _problems/test_AutoFSelector-137.R Saving _problems/test_AutoFSelector-166.R Saving _problems/test_AutoFSelector-211.R Saving _problems/test_FSelectInstanceMultiCrit-16.R Saving _problems/test_FSelectInstanceMultiCrit-29.R Saving _problems/test_FSelectInstanceMultiCrit-37.R Saving _problems/test_FSelectInstanceSingleCrit-16.R Saving _problems/test_FSelectInstanceSingleCrit-40.R Saving _problems/test_FSelectInstanceSingleCrit-48.R Saving _problems/test_FSelectInstanceSingleCrit-85.R Saving _problems/test_FSelectInstanceSingleCrit-111.R Saving _problems/test_FSelectInstanceSingleCrit-131.R Saving _problems/test_FSelectorBatchDesignPoints-8.R Saving _problems/test_FSelectorBatchDesignPoints-20.R Saving _problems/test_FSelectorExhaustiveSearch-2.R Saving _problems/test_FSelectorExhaustiveSearch-14.R Saving _problems/test_FSelectorExhaustiveSearch-23.R Saving _problems/test_FSelectorExhaustiveSearch-27.R Saving _problems/test_FSelectorGeneticSearch-4.R Saving _problems/test_FSelectorRFE-2.R Saving _problems/test_FSelectorRFE-11.R Saving _problems/test_FSelectorRFE-18.R Saving _problems/test_FSelectorRFE-27.R Saving _problems/test_FSelectorRFE-49.R Saving _problems/test_FSelectorRFE-63.R Saving _problems/test_FSelectorRFE-83.R Saving _problems/test_FSelectorRFE-131.R Saving _problems/test_FSelectorRFE-142.R Saving _problems/test_FSelectorRFE-161.R Saving _problems/test_FSelectorRFE-233.R Saving _problems/test_FSelectorRFE-290.R Saving _problems/test_FSelectorRFECV-12.R Saving _problems/test_FSelectorRFECV-32.R Saving _problems/test_FSelectorRFECV-61.R Saving _problems/test_FSelectorRFECV-118.R Saving _problems/test_FSelectorRandomSearch-2.R Saving _problems/test_FSelectorRandomSearch-6.R Saving _problems/test_FSelectorRandomSearch-12.R Saving _problems/test_FSelectorSequential-2.R Saving _problems/test_FSelectorSequential-11.R Saving _problems/test_FSelectorSequential-20.R Saving _problems/test_FSelectorSequential-26.R Saving _problems/test_FSelectorSequential-32.R Saving _problems/test_FSelectorSequential-39.R Saving _problems/test_FSelectorShadowVariableSearch-2.R Saving _problems/test_FSelectorShadowVariableSearch-14.R Saving _problems/test_FSelectorShadowVariableSearch-26.R Saving _problems/test_FSelectorShadowVariableSearch-35.R Saving _problems/test_FSelectorShadowVariableSearch-54.R Saving _problems/test_ObjectiveFSelect-15.R Saving _problems/test_ObjectiveFSelect-35.R Saving _problems/test_ObjectiveFSelect-54.R Saving _problems/test_ObjectiveFSelect-74.R Saving _problems/test_ObjectiveFSelect-126.R Saving _problems/test_ObjectiveFSelectAsync-15.R Saving _problems/test_ObjectiveFSelectAsync-37.R Saving _problems/test_ObjectiveFSelectAsync-61.R Saving _problems/test_ObjectiveFSelectAsync-85.R Saving _problems/test_embedded_ensemble_fselect-9.R Saving _problems/test_embedded_ensemble_fselect-74.R Saving _problems/test_ensemble_fselect-13.R Saving _problems/test_ensemble_fselect-108.R Saving _problems/test_ensemble_fselect-359.R Saving _problems/test_extract_inner_fselect_archives-3.R Saving _problems/test_extract_inner_fselect_archives-12.R Saving _problems/test_extract_inner_fselect_archives-24.R Saving _problems/test_extract_inner_fselect_archives-37.R Saving _problems/test_extract_inner_fselect_archives-50.R Saving _problems/test_extract_inner_fselect_archives-61.R Saving _problems/test_extract_inner_fselect_archives-70.R Saving _problems/test_extract_inner_fselect_archives-80.R Saving _problems/test_extract_inner_fselect_archives-92.R Saving _problems/test_extract_inner_fselect_archives-104.R Saving _problems/test_extract_inner_fselect_result-3.R Saving _problems/test_extract_inner_fselect_result-12.R Saving _problems/test_extract_inner_fselect_result-24.R Saving _problems/test_extract_inner_fselect_result-37.R Saving _problems/test_extract_inner_fselect_result-50.R Saving _problems/test_extract_inner_fselect_result-61.R Saving _problems/test_extract_inner_fselect_result-70.R Saving _problems/test_extract_inner_fselect_result-80.R Saving _problems/test_extract_inner_fselect_result-92.R Saving _problems/test_extract_inner_fselect_result-104.R Saving _problems/test_extract_inner_fselect_result-113.R Saving _problems/test_extract_inner_fselect_result-125.R Saving _problems/test_fselect-3.R Saving _problems/test_fselect-12.R Saving _problems/test_fselect-21.R Saving _problems/test_fselect_nested-4.R Saving _problems/test_mlr_callbacks-12.R Saving _problems/test_mlr_callbacks-32.R Saving _problems/test_mlr_callbacks-53.R Saving _problems/test_mlr_callbacks-73.R Saving _problems/test_mlr_callbacks-96.R [ FAIL 100 | WARN 27 | SKIP 52 | PASS 235 ] ══ Skipped tests (52) ══════════════════════════════════════════════════════════ • On CRAN (52): 'test_ArchiveAsyncFSelect.R:2:3', 'test_ArchiveAsyncFSelect.R:51:3', 'test_ArchiveAsyncFSelect.R:107:3', 'test_ArchiveAsyncFSelect.R:133:3', 'test_ArchiveAsyncFSelect.R:155:3', 'test_ArchiveAsyncFSelect.R:181:3', 'test_ArchiveAsyncFSelectFrozen.R:2:3', 'test_AutoFSelector.R:2:3', 'test_AutoFSelector.R:29:3', 'test_AutoFSelector.R:64:3', 'test_AutoFSelector.R:219:3', 'test_CallbackAsyncFSelect.R:4:3', 'test_CallbackAsyncFSelect.R:32:3', 'test_CallbackAsyncFSelect.R:62:3', 'test_CallbackAsyncFSelect.R:90:3', 'test_CallbackAsyncFSelect.R:120:3', 'test_CallbackAsyncFSelect.R:154:3', 'test_CallbackAsyncFSelect.R:181:3', 'test_CallbackAsyncFSelect.R:213:3', 'test_CallbackAsyncFSelect.R:242:3', 'test_CallbackAsyncFSelect.R:269:3', 'test_CallbackAsyncFSelect.R:298:3', 'test_CallbackAsyncFSelect.R:327:3', 'test_CallbackAsyncFSelect.R:354:3', 'test_CallbackAsyncFSelect.R:383:3', 'test_CallbackAsyncFSelect.R:419:3', 'test_CallbackAsyncFSelect.R:454:3', 'test_CallbackAsyncFSelect.R:488:3', 'test_FSelectInstanceAsyncMultiCrit.R:2:3', 'test_FSelectInstanceAsyncMultiCrit.R:30:3', 'test_FSelectInstanceAsyncMultiCrit.R:53:3', 'test_FSelectInstanceAsyncMultiCrit.R:77:3', 'test_FSelectInstanceAsyncMultiCrit.R:101:3', 'test_FSelectInstanceAsyncMultiCrit.R:129:3', 'test_FSelectInstanceAsyncSingleCrit.R:2:3', 'test_FSelectInstanceAsyncSingleCrit.R:29:3', 'test_FSelectInstanceAsyncSingleCrit.R:50:3', 'test_FSelectInstanceAsyncSingleCrit.R:73:3', 'test_FSelectInstanceAsyncSingleCrit.R:98:3', 'test_FSelectInstanceAsyncSingleCrit.R:124:3', 'test_FSelectorAsyncDesignPoints.R:2:3', 'test_FSelectorAsyncExhaustiveSearch.R:2:3', 'test_FSelectorAsyncRandomSearch.R:2:3', 'test_ObjectiveFSelectAsync.R:96:3', 'test_ObjectiveFSelectAsync.R:160:3', 'test_auto_fselector.R:24:3', 'test_auto_fselector.R:47:3', 'test_fsi_async.R:2:3', 'test_fsi_async.R:16:3', 'test_fsi_async.R:30:3', 'test_fsi_async.R:42:3', 'test_mlr_callbacks.R:108:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ArchiveBatchFSelect.R:2:3'): ArchiveBatchFSelect access methods work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:2:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:52:3'): ArchiveBatchFSelect as.data.table function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:52:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:157:3'): global ties method works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:157:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:198:3'): local ties method works when maximize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:198:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:226:3'): local ties method works when minimize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:226:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchFSelect.R:254:3'): local ties method works with batches ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ArchiveBatchFSelect.R:254:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:137:3'): AutoFSelector works with GraphLearner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoFSelector.R:137:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AtFSlctr>`, task = `<TaskRegr>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 21. └─inst$eval_batch(states) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:166:3'): AutoFSelector get_base_learner method works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─afs$train(tsk("pima")) at test_AutoFSelector.R:166:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AtFSlctr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 21. └─inst$eval_batch(as.data.table(X)) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_AutoFSelector.R:211:3'): AutoFSelector hash works #647 in mlr3 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_AutoFSelector.R:211:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_FSelectInstanceMultiCrit.R:16:3'): eval_batch works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceMultiCrit.R:16:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceMultiCrit.R:29:3'): objective_function works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$objective_function(c(1, 1, 0, 0)) at test_FSelectInstanceMultiCrit.R:29:3 2. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 3. └─private$.objective_function(x, self, self$objective_multiplicator) 4. └─inst$eval_batch(xdt) 5. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 6. └─self$objective$eval_many(xss_trafoed) 7. └─bbotk:::.__Objective__eval_many(...) 8. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 9. │ └─base::eval.parent(expr, n = 1L) 10. │ └─base::eval(expr, p) 11. │ └─base::eval(expr, p) 12. └─private$.eval_many(xss = xss, resampling = `<list>`) 13. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 14. └─mlr3::benchmark(...) 15. └─ResultData$new(grid, data_extra, store_backends = store_backends) 16. └─mlr3 (local) initialize(...) 17. └─mlr3:::.__ResultData__initialize(...) 18. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceMultiCrit.R:37:3'): store_benchmark_result flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceMultiCrit.R:37:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:16:3'): eval_batch works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceSingleCrit.R:16:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:40:3'): objective_function works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$objective_function(c(1, 1, 0, 0)) at test_FSelectInstanceSingleCrit.R:40:3 2. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 3. └─private$.objective_function(x, self, self$objective_multiplicator) 4. └─inst$eval_batch(xdt) 5. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 6. └─self$objective$eval_many(xss_trafoed) 7. └─bbotk:::.__Objective__eval_many(...) 8. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 9. │ └─base::eval.parent(expr, n = 1L) 10. │ └─base::eval(expr, p) 11. │ └─base::eval(expr, p) 12. └─private$.eval_many(xss = xss, resampling = `<list>`) 13. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 14. └─mlr3::benchmark(...) 15. └─ResultData$new(grid, data_extra, store_backends = store_backends) 16. └─mlr3 (local) initialize(...) 17. └─mlr3:::.__ResultData__initialize(...) 18. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 19. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:48:3'): store_benchmark_result flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(xdt) at test_FSelectInstanceSingleCrit.R:48:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:77:3'): always include variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectInstanceSingleCrit.R:77:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:103:3'): always include variables works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectInstanceSingleCrit.R:103:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectInstanceSingleCrit.R:131:3'): objective contains no benchmark results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectInstanceSingleCrit.R:131:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 10. └─inst$eval_batch(as.data.table(X)) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorBatchDesignPoints.R:8:3'): default parameters work ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("design_points", design = design) at test_FSelectorBatchDesignPoints.R:8:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 14. └─instance$eval_batch(design[inds, ]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorBatchDesignPoints.R:20:3'): multi-crit works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("design_points", design = design) at test_FSelectorBatchDesignPoints.R:20:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 14. └─instance$eval_batch(design[inds, ]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:2:3'): default parameters work ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search") at test_FSelectorExhaustiveSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:14:3'): max_features parameter works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search", max_features = 2) at test_FSelectorExhaustiveSearch.R:14:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:23:3'): multi-crit works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("exhaustive_search") at test_FSelectorExhaustiveSearch.R:23:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorExhaustiveSearch.R:27:3'): batch_size parameter works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("exhaustive_search", batch_size = 2) at test_FSelectorExhaustiveSearch.R:27:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 12. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 13. └─mlr3fselect (local) .f(.xi, ...) 14. └─inst$eval_batch(states[row_ids]) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorGeneticSearch.R:4:3'): default parameters work ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("genetic_search", term_evals = 10) at test_FSelectorGeneticSearch.R:4:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchGeneticSearch__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─genalg::rbga.bin(...) 17. └─bbotk (local) evalFunc(population[object, ]) 18. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 19. └─private$.objective_function(x, self, self$objective_multiplicator) 20. └─inst$eval_batch(xdt) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:2:3'): importance is stored in the archive ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", store_models = TRUE) at test_FSelectorRFE.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:11:3'): default parameters work ───────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", store_models = TRUE) at test_FSelectorRFE.R:11:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:18:3'): recursive parameter works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", recursive = FALSE, store_models = TRUE) at test_FSelectorRFE.R:18:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:27:3'): feature_fraction parameter works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_fraction = 0.9, store_models = TRUE) at test_FSelectorRFE.R:27:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:49:3'): feature_number parameter works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_number = 1, store_models = TRUE) at test_FSelectorRFE.R:49:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:63:3'): subset_size parameter works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", subset_sizes = c(3L, 1L), store_models = TRUE) at test_FSelectorRFE.R:63:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:83:3'): subset is full feature set works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("rfe", feature_number = 4, store_models = TRUE) at test_FSelectorRFE.R:83:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 12. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 13. └─inst$eval_batch(states) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:131:3'): rank_importance function works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_FSelectorRFE.R:131:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:142:3'): average_importance function works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("cv", folds = 3), store_models = TRUE) at test_FSelectorRFE.R:142:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:154:3'): works without storing models ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_FSelectorRFE.R:154:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 11. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:233:3'): optimal features are selected with rank ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFE.R:233:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFE.R:290:3'): optimal features are selected with mean ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFE.R:290:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:12:3'): extra columns are stored in the archive ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:12:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:32:3'): resampling is converted ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:32:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:61:3'): default parameters work ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:61:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRFECV.R:118:3'): optimal features are selected ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─optimizer$optimize(instance) at test_FSelectorRFECV.R:118:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchRFECV__.optimize(...) 10. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, folds = resampling_cv$iters) 11. └─inst$eval_batch(states) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:2:3'): default parameters work ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("random_search", batch_size = 5, term_evals = 10) at test_FSelectorRandomSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:6:3'): max_features parameter work ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("random_search", max_features = 1, term_evals = 10) at test_FSelectorRandomSearch.R:6:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorRandomSearch.R:12:3'): multi-crit works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector_2D("random_search", batch_size = 5, term_evals = 10) at test_FSelectorRandomSearch.R:12:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(as.data.table(X)) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:2:3'): default parameters works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:11:3'): sbs strategy works ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", strategy = "sbs") at test_FSelectorSequential.R:11:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:20:3'): sfs strategy works with max_features parameter ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", max_features = 2) at test_FSelectorSequential.R:20:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:26:3'): sbs strategy works with max_features parameter ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential", max_features = 2, strategy = "sbs") at test_FSelectorSequential.R:26:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:32:3'): optimization_path method works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:32:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorSequential.R:39:3'): optimization_path method works with included uhash ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("sequential") at test_FSelectorSequential.R:39:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchSequential__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:2:3'): default parameters work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_fselector("shadow_variable_search", store_models = TRUE) at test_FSelectorShadowVariableSearch.R:2:3 2. └─mlr3fselect::fselect(...) 3. └─fselector$optimize(instance) 4. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:14:3'): task is permuted ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:14:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:26:3'): first selected feature is a shadow variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_error(fselector$optimize(instance), regexp = "The first selected feature is a shadow variable.") at test_FSelectorShadowVariableSearch.R:26:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. └─fselector$optimize(instance) 8. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 16. └─inst$eval_batch(states) 17. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 18. └─self$objective$eval_many(xss_trafoed) 19. └─bbotk:::.__Objective__eval_many(...) 20. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 21. │ └─base::eval.parent(expr, n = 1L) 22. │ └─base::eval(expr, p) 23. │ └─base::eval(expr, p) 24. └─private$.eval_many(xss = xss, resampling = `<list>`) 25. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 26. └─mlr3::benchmark(...) 27. └─ResultData$new(grid, data_extra, store_backends = store_backends) 28. └─mlr3 (local) initialize(...) 29. └─mlr3:::.__ResultData__initialize(...) 30. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 31. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:35:3'): second selected feature is a shadow variable works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:35:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_FSelectorShadowVariableSearch.R:54:3'): search is terminated by terminator works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─fselector$optimize(instance) at test_FSelectorShadowVariableSearch.R:54:3 2. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3fselect:::.__FSelectorBatchShadowVariableSearch__.optimize(...) 10. └─inst$eval_batch(states) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(xss_trafoed) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:15:3'): ObjectiveFSelectBatch ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:15:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:35:3'): ObjectiveFSelectBatch works with multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:35:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:54:3'): ObjectiveFSelectBatch works with store_models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveFSelect.R:54:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:67:5'): fast aggregation works ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ObjectiveFSelect.R:66:3 2. │ └─base::force(expr) 3. └─mlr3fselect::fselect(...) at test_ObjectiveFSelect.R:67:5 4. └─fselector$optimize(instance) 5. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(as.data.table(X)) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelect.R:119:3'): fast aggregation conditions work ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_ObjectiveFSelect.R:119:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:15:3'): objective async works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:15:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:37:3'): store benchmark result works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:37:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:61:3'): store models works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:61:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveFSelectAsync.R:85:3'): rush objective with multiple measures works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveFSelectAsync.R:85:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3fselect:::.__ObjectiveFSelectAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_embedded_ensemble_fselect.R:4:5'): embedded efs works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_embedded_ensemble_fselect.R:3:3 2. │ └─base::force(expr) 3. └─mlr3fselect::embedded_ensemble_fselect(...) at test_embedded_ensemble_fselect.R:4:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_embedded_ensemble_fselect.R:69:5'): combine embedded efs results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_embedded_ensemble_fselect.R:68:3 2. │ └─base::force(expr) 3. └─mlr3fselect::embedded_ensemble_fselect(...) at test_embedded_ensemble_fselect.R:69:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─ResultData$new(grid, data_extra, store_backends = store_backends) 6. └─mlr3 (local) initialize(...) 7. └─mlr3:::.__ResultData__initialize(...) 8. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 9. └─data.table:::`[.data.table`(...) ── Error ('test_ensemble_fselect.R:4:5'): efs works ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ensemble_fselect.R:3:3 2. │ └─base::force(expr) 3. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:4:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─mlr3:::future_map(...) 6. └─future.apply::future_mapply(...) 7. └─future.apply:::future_xapply(...) 8. └─base::tryCatch(...) 9. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. └─base (local) tryCatchOne(...) 11. └─value[[3L]](cond) 12. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_ensemble_fselect.R:99:5'): efs works with rfe ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global with_seed(...) at test_ensemble_fselect.R:98:3 2. │ └─base::force(expr) 3. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:99:5 4. └─mlr3::benchmark(design, store_models = TRUE) 5. └─mlr3:::future_map(...) 6. └─future.apply::future_mapply(...) 7. └─future.apply:::future_xapply(...) 8. └─base::tryCatch(...) 9. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. └─base (local) tryCatchOne(...) 11. └─value[[3L]](cond) 12. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_ensemble_fselect.R:349:3'): different callbacks can be set ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::ensemble_fselect(...) at test_ensemble_fselect.R:349:3 2. └─mlr3::benchmark(design, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:2:3'): extract_inner_fselect_archives function works with resample and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_archives.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:11:3'): extract_inner_fselect_archives function works with resample and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_archives.R:11:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:24:3'): extract_inner_fselect_archives function works with benchmark and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:24:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:37:3'): extract_inner_fselect_archives function works with benchmark and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:37:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:50:3'): extract_inner_fselect_archives function works with multiple tasks ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:50:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:61:3'): extract_inner_fselect_archives function works with no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = FALSE) at test_extract_inner_fselect_archives.R:61:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:70:3'): extract_inner_fselect_archives function works with no instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = TRUE) at test_extract_inner_fselect_archives.R:70:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:80:3'): extract_inner_fselect_archives function works with benchmark and no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = FALSE) at test_extract_inner_fselect_archives.R:80:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:92:3'): extract_inner_fselect_archives function works with mixed store instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:92:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_archives.R:104:3'): extract_inner_fselect_archives function works with autofselector and learner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_archives.R:104:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:2:3'): extract_inner_fselect_results function works with resample and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:11:3'): extract_inner_fselect_results function works with resample and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:11:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:24:3'): extract_inner_fselect_results function works with benchmark and cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:24:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:37:3'): extract_inner_fselect_results function works with benchmark and repeated cv ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:37:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:50:3'): extract_inner_fselect_results function works with multiple tasks ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:50:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:61:3'): extract_inner_fselect_results function works with no model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = FALSE) at test_extract_inner_fselect_result.R:61:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:70:3'): extract_inner_fselect_results function works no instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, resampling_outer, store_models = TRUE) at test_extract_inner_fselect_result.R:70:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:80:3'): extract_inner_fselect_results function works with benchmark and no models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = FALSE) at test_extract_inner_fselect_result.R:80:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:92:3'): extract_inner_fselect_results function works with mixed store instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:92:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:104:3'): extract_inner_fselect_results function works with learner and autotuner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:104:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:113:3'): extract_inner_fselect_results function works with resample and return of instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_extract_inner_fselect_result.R:113:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_fselect_result.R:125:3'): extract_inner_fselect_results function works with benchmark and return of instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_extract_inner_fselect_result.R:125:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_fselect.R:2:3'): fselect function works with single measure ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:2:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect.R:11:3'): fselect function works with multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:11:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect.R:20:3'): fselect function accepts string input for method ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_fselect.R:20:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_fselect_nested.R:2:3'): fselect_nested function works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect_nested(...) at test_fselect_nested.R:2:3 2. └─mlr3::resample(task, afs, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_mlr_callbacks.R:4:3'): backup callback works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:4:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:23:3'): svm_rfe callbacks works ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:23:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRFE__.optimize(...) 11. └─mlr3fselect:::rfe_workhorse(inst, subsets, recursive, aggregation) 12. └─inst$eval_batch(states) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:46:3'): one_se_rule callback works ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:46:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchExhaustiveSearch__.optimize(...) 11. └─mlr3misc::walk(chunks, function(row_ids) inst$eval_batch(states[row_ids])) 12. └─mlr3fselect (local) .f(.xi, ...) 13. └─inst$eval_batch(states[row_ids]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:65:3'): internal tuning callback works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3fselect::fselect(...) at test_mlr_callbacks.R:65:3 2. └─fselector$optimize(instance) 3. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 4. └─bbotk::optimize_batch_default(inst, self) 5. ├─base::tryCatch(...) 6. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 8. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 9. └─get_private(optimizer)$.optimize(instance) 10. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 11. └─inst$eval_batch(as.data.table(X)) 12. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 13. └─self$objective$eval_many(xss_trafoed) 14. └─bbotk:::.__Objective__eval_many(...) 15. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 16. │ └─base::eval.parent(expr, n = 1L) 17. │ └─base::eval(expr, p) 18. │ └─base::eval(expr, p) 19. └─private$.eval_many(xss = xss, resampling = `<list>`) 20. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 21. └─mlr3::benchmark(...) 22. └─ResultData$new(grid, data_extra, store_backends = store_backends) 23. └─mlr3 (local) initialize(...) 24. └─mlr3:::.__ResultData__initialize(...) 25. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 26. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:96:3'): internal tuning callback works with AutoFSelector ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─afs$train(tsk("pima")) at test_mlr_callbacks.R:96:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AtFSlctr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3fselect:::.__AutoFSelector__.train(...) 12. └─self$fselector$optimize(instance) 13. └─mlr3fselect:::.__FSelectorBatch__optimize(...) 14. └─bbotk::optimize_batch_default(inst, self) 15. ├─base::tryCatch(...) 16. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 17. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 19. └─get_private(optimizer)$.optimize(instance) 20. └─mlr3fselect:::.__FSelectorBatchRandomSearch__.optimize(...) 21. └─inst$eval_batch(as.data.table(X)) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3fselect:::.__ObjectiveFSelectBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) [ FAIL 100 | WARN 27 | SKIP 52 | PASS 235 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package mlr3hyperband

Current CRAN status: ERROR: 4, OK: 9

Version: 1.0.0
Check: tests
Result: ERROR Running ‘testthat.R’ [76s/89s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3hyperband") + test_check("mlr3hyperband") + } Loading required package: mlr3tuning Loading required package: mlr3 Loading required package: paradox Saving _problems/test_TunerBatchHyperband-7.R Saving _problems/test_TunerBatchHyperband-16.R Saving _problems/test_TunerBatchHyperband-25.R Saving _problems/test_TunerBatchHyperband-34.R Saving _problems/test_TunerBatchHyperband-47.R Saving _problems/test_TunerBatchHyperband-58.R Saving _problems/test_TunerBatchHyperband-68.R Saving _problems/test_TunerBatchHyperband-82.R Saving _problems/test_TunerBatchHyperband-167.R Saving _problems/test_TunerBatchHyperband-178.R Saving _problems/test_TunerBatchHyperband-189.R Saving _problems/test_TunerBatchHyperband-203.R Saving _problems/test_TunerBatchHyperband-219.R Saving _problems/test_TunerBatchHyperband-236.R Saving _problems/test_TunerBatchSuccessiveHalving-7.R Saving _problems/test_TunerBatchSuccessiveHalving-16.R Saving _problems/test_TunerBatchSuccessiveHalving-25.R Saving _problems/test_TunerBatchSuccessiveHalving-34.R Saving _problems/test_TunerBatchSuccessiveHalving-43.R Saving _problems/test_TunerBatchSuccessiveHalving-65.R Saving _problems/test_TunerBatchSuccessiveHalving-76.R Saving _problems/test_TunerBatchSuccessiveHalving-85.R Saving _problems/test_TunerBatchSuccessiveHalving-96.R Saving _problems/test_TunerBatchSuccessiveHalving-181.R Saving _problems/test_TunerBatchSuccessiveHalving-191.R Saving _problems/test_TunerBatchSuccessiveHalving-201.R Saving _problems/test_TunerBatchSuccessiveHalving-215.R Saving _problems/test_TunerBatchSuccessiveHalving-231.R Saving _problems/test_TunerBatchSuccessiveHalving-248.R Saving _problems/test_TunerBatchSuccessiveHalving-259.R Saving _problems/test_TunerBatchSuccessiveHalving-268.R Saving _problems/test_TunerBatchSuccessiveHalving-277.R [ FAIL 32 | WARN 0 | SKIP 1 | PASS 36 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test_TunerAsyncSuccessiveHalving.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_TunerBatchHyperband.R:7:3'): TunerBatchHyperband works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:7:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:16:3'): TunerBatchHyperband works with minimum budget > 1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:16:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:25:3'): TunerBatchHyperband rounds budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:25:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:34:3'): TunerBatchHyperband works with eta = 2.5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2.5, learner) at test_TunerBatchHyperband.R:34:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:47:3'): TunerBatchHyperband works with xgboost ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:47:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:58:3'): TunerBatchHyperband works with subsampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 3, graph_learner) at test_TunerBatchHyperband.R:58:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:68:3'): TunerBatchHyperband works works with multi-crit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:68:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:82:3'): TunerBatchHyperband works with custom sampler ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner, sampler = sampler) at test_TunerBatchHyperband.R:82:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:167:3'): TunerBatchHyperband minimizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:167:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:178:3'): TunerBatchHyperband maximizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:178:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:189:3'): TunerBatchHyperband works with single budget value ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:189:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:198:3'): TunerBatchHyperband works with repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:198:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:214:3'): TunerBatchHyperband terminates itself ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:214:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:230:3'): TunerBatchHyperband works with infinite repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:230:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:7:3'): TunerBatchSuccessiveHalving works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:7:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:16:3'): TunerBatchSuccessiveHalving works with minimum budget > 1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:16:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:25:3'): TunerBatchSuccessiveHalving rounds budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:25:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:34:3'): TunerBatchSuccessiveHalving works with eta = 2.5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:34:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:43:3'): TunerBatchSuccessiveHalving adjusts minimum budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:43:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:65:3'): TunerBatchSuccessiveHalving works with xgboost ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:65:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:76:3'): TunerBatchSuccessiveHalving works with subsampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:76:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:85:3'): TunerBatchSuccessiveHalving works with multi-crit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:85:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:96:3'): TunerBatchSuccessiveHalving works with custom sampler ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:96:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:181:3'): TunerBatchSuccessiveHalving minimizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:181:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:191:3'): TunerBatchSuccessiveHalving maximizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:191:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:201:3'): TunerBatchSuccessiveHalving works with single budget value ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:201:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:210:3'): TunerBatchSuccessiveHalving works with repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:210:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:226:3'): TunerBatchSuccessiveHalving terminates itself ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:226:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:242:3'): TunerBatchSuccessiveHalving works with infinite repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:242:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:259:3'): TunerBatchSuccessiveHalving works with r_max > n ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:259:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:268:3'): TunerBatchSuccessiveHalving works with r_max < n ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:268:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:277:3'): TunerBatchSuccessiveHalving works with r_max < n and adjust minimum budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:277:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) [ FAIL 32 | WARN 0 | SKIP 1 | PASS 36 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.0.0
Check: tests
Result: ERROR Running ‘testthat.R’ [54s/73s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3hyperband") + test_check("mlr3hyperband") + } Loading required package: mlr3tuning Loading required package: mlr3 Loading required package: paradox Saving _problems/test_TunerBatchHyperband-7.R Saving _problems/test_TunerBatchHyperband-16.R Saving _problems/test_TunerBatchHyperband-25.R Saving _problems/test_TunerBatchHyperband-34.R Saving _problems/test_TunerBatchHyperband-47.R Saving _problems/test_TunerBatchHyperband-58.R Saving _problems/test_TunerBatchHyperband-68.R Saving _problems/test_TunerBatchHyperband-82.R Saving _problems/test_TunerBatchHyperband-167.R Saving _problems/test_TunerBatchHyperband-178.R Saving _problems/test_TunerBatchHyperband-189.R Saving _problems/test_TunerBatchHyperband-203.R Saving _problems/test_TunerBatchHyperband-219.R Saving _problems/test_TunerBatchHyperband-236.R Saving _problems/test_TunerBatchSuccessiveHalving-7.R Saving _problems/test_TunerBatchSuccessiveHalving-16.R Saving _problems/test_TunerBatchSuccessiveHalving-25.R Saving _problems/test_TunerBatchSuccessiveHalving-34.R Saving _problems/test_TunerBatchSuccessiveHalving-43.R Saving _problems/test_TunerBatchSuccessiveHalving-65.R Saving _problems/test_TunerBatchSuccessiveHalving-76.R Saving _problems/test_TunerBatchSuccessiveHalving-85.R Saving _problems/test_TunerBatchSuccessiveHalving-96.R Saving _problems/test_TunerBatchSuccessiveHalving-181.R Saving _problems/test_TunerBatchSuccessiveHalving-191.R Saving _problems/test_TunerBatchSuccessiveHalving-201.R Saving _problems/test_TunerBatchSuccessiveHalving-215.R Saving _problems/test_TunerBatchSuccessiveHalving-231.R Saving _problems/test_TunerBatchSuccessiveHalving-248.R Saving _problems/test_TunerBatchSuccessiveHalving-259.R Saving _problems/test_TunerBatchSuccessiveHalving-268.R Saving _problems/test_TunerBatchSuccessiveHalving-277.R [ FAIL 32 | WARN 0 | SKIP 1 | PASS 36 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test_TunerAsyncSuccessiveHalving.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_TunerBatchHyperband.R:7:3'): TunerBatchHyperband works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:7:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:16:3'): TunerBatchHyperband works with minimum budget > 1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:16:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:25:3'): TunerBatchHyperband rounds budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:25:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:34:3'): TunerBatchHyperband works with eta = 2.5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2.5, learner) at test_TunerBatchHyperband.R:34:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:47:3'): TunerBatchHyperband works with xgboost ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:47:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:58:3'): TunerBatchHyperband works with subsampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 3, graph_learner) at test_TunerBatchHyperband.R:58:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:68:3'): TunerBatchHyperband works works with multi-crit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:68:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:82:3'): TunerBatchHyperband works with custom sampler ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner, sampler = sampler) at test_TunerBatchHyperband.R:82:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:167:3'): TunerBatchHyperband minimizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:167:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:178:3'): TunerBatchHyperband maximizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:178:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:189:3'): TunerBatchHyperband works with single budget value ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:189:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:198:3'): TunerBatchHyperband works with repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:198:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:214:3'): TunerBatchHyperband terminates itself ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:214:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:230:3'): TunerBatchHyperband works with infinite repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:230:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:7:3'): TunerBatchSuccessiveHalving works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:7:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:16:3'): TunerBatchSuccessiveHalving works with minimum budget > 1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:16:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:25:3'): TunerBatchSuccessiveHalving rounds budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:25:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:34:3'): TunerBatchSuccessiveHalving works with eta = 2.5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:34:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:43:3'): TunerBatchSuccessiveHalving adjusts minimum budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:43:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:65:3'): TunerBatchSuccessiveHalving works with xgboost ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:65:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:76:3'): TunerBatchSuccessiveHalving works with subsampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:76:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:85:3'): TunerBatchSuccessiveHalving works with multi-crit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:85:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:96:3'): TunerBatchSuccessiveHalving works with custom sampler ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:96:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:181:3'): TunerBatchSuccessiveHalving minimizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:181:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:191:3'): TunerBatchSuccessiveHalving maximizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:191:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:201:3'): TunerBatchSuccessiveHalving works with single budget value ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:201:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:210:3'): TunerBatchSuccessiveHalving works with repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:210:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:226:3'): TunerBatchSuccessiveHalving terminates itself ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:226:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:242:3'): TunerBatchSuccessiveHalving works with infinite repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:242:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:259:3'): TunerBatchSuccessiveHalving works with r_max > n ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:259:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:268:3'): TunerBatchSuccessiveHalving works with r_max < n ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:268:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:277:3'): TunerBatchSuccessiveHalving works with r_max < n and adjust minimum budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:277:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) [ FAIL 32 | WARN 0 | SKIP 1 | PASS 36 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.0.0
Check: tests
Result: ERROR Running ‘testthat.R’ [121s/238s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3hyperband") + test_check("mlr3hyperband") + } Loading required package: mlr3tuning Loading required package: mlr3 Loading required package: paradox Saving _problems/test_TunerBatchHyperband-7.R Saving _problems/test_TunerBatchHyperband-16.R Saving _problems/test_TunerBatchHyperband-25.R Saving _problems/test_TunerBatchHyperband-34.R Saving _problems/test_TunerBatchHyperband-47.R Saving _problems/test_TunerBatchHyperband-58.R Saving _problems/test_TunerBatchHyperband-68.R Saving _problems/test_TunerBatchHyperband-82.R Saving _problems/test_TunerBatchHyperband-167.R Saving _problems/test_TunerBatchHyperband-178.R Saving _problems/test_TunerBatchHyperband-189.R Saving _problems/test_TunerBatchHyperband-203.R Saving _problems/test_TunerBatchHyperband-219.R Saving _problems/test_TunerBatchHyperband-236.R Saving _problems/test_TunerBatchSuccessiveHalving-7.R Saving _problems/test_TunerBatchSuccessiveHalving-16.R Saving _problems/test_TunerBatchSuccessiveHalving-25.R Saving _problems/test_TunerBatchSuccessiveHalving-34.R Saving _problems/test_TunerBatchSuccessiveHalving-43.R Saving _problems/test_TunerBatchSuccessiveHalving-65.R Saving _problems/test_TunerBatchSuccessiveHalving-76.R Saving _problems/test_TunerBatchSuccessiveHalving-85.R Saving _problems/test_TunerBatchSuccessiveHalving-96.R Saving _problems/test_TunerBatchSuccessiveHalving-181.R Saving _problems/test_TunerBatchSuccessiveHalving-191.R Saving _problems/test_TunerBatchSuccessiveHalving-201.R Saving _problems/test_TunerBatchSuccessiveHalving-215.R Saving _problems/test_TunerBatchSuccessiveHalving-231.R Saving _problems/test_TunerBatchSuccessiveHalving-248.R Saving _problems/test_TunerBatchSuccessiveHalving-259.R Saving _problems/test_TunerBatchSuccessiveHalving-268.R Saving _problems/test_TunerBatchSuccessiveHalving-277.R [ FAIL 32 | WARN 0 | SKIP 1 | PASS 36 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test_TunerAsyncSuccessiveHalving.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_TunerBatchHyperband.R:7:3'): TunerBatchHyperband works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:7:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:16:3'): TunerBatchHyperband works with minimum budget > 1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:16:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:25:3'): TunerBatchHyperband rounds budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:25:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:34:3'): TunerBatchHyperband works with eta = 2.5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2.5, learner) at test_TunerBatchHyperband.R:34:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:47:3'): TunerBatchHyperband works with xgboost ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:47:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:58:3'): TunerBatchHyperband works with subsampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 3, graph_learner) at test_TunerBatchHyperband.R:58:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:68:3'): TunerBatchHyperband works works with multi-crit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:68:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:82:3'): TunerBatchHyperband works with custom sampler ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner, sampler = sampler) at test_TunerBatchHyperband.R:82:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:167:3'): TunerBatchHyperband minimizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:167:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:178:3'): TunerBatchHyperband maximizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:178:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:189:3'): TunerBatchHyperband works with single budget value ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:189:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:198:3'): TunerBatchHyperband works with repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:198:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:214:3'): TunerBatchHyperband terminates itself ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:214:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:230:3'): TunerBatchHyperband works with infinite repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:230:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:7:3'): TunerBatchSuccessiveHalving works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:7:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:16:3'): TunerBatchSuccessiveHalving works with minimum budget > 1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:16:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:25:3'): TunerBatchSuccessiveHalving rounds budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:25:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:34:3'): TunerBatchSuccessiveHalving works with eta = 2.5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:34:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:43:3'): TunerBatchSuccessiveHalving adjusts minimum budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:43:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:65:3'): TunerBatchSuccessiveHalving works with xgboost ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:65:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:76:3'): TunerBatchSuccessiveHalving works with subsampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:76:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:85:3'): TunerBatchSuccessiveHalving works with multi-crit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:85:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:96:3'): TunerBatchSuccessiveHalving works with custom sampler ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:96:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:181:3'): TunerBatchSuccessiveHalving minimizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:181:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:191:3'): TunerBatchSuccessiveHalving maximizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:191:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:201:3'): TunerBatchSuccessiveHalving works with single budget value ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:201:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:210:3'): TunerBatchSuccessiveHalving works with repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:210:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:226:3'): TunerBatchSuccessiveHalving terminates itself ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:226:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:242:3'): TunerBatchSuccessiveHalving works with infinite repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:242:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:259:3'): TunerBatchSuccessiveHalving works with r_max > n ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:259:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:268:3'): TunerBatchSuccessiveHalving works with r_max < n ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:268:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:277:3'): TunerBatchSuccessiveHalving works with r_max < n and adjust minimum budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:277:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) [ FAIL 32 | WARN 0 | SKIP 1 | PASS 36 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.0.0
Check: tests
Result: ERROR Running ‘testthat.R’ [110s/193s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3hyperband") + test_check("mlr3hyperband") + } Loading required package: mlr3tuning Loading required package: mlr3 Loading required package: paradox Saving _problems/test_TunerBatchHyperband-7.R Saving _problems/test_TunerBatchHyperband-16.R Saving _problems/test_TunerBatchHyperband-25.R Saving _problems/test_TunerBatchHyperband-34.R Saving _problems/test_TunerBatchHyperband-47.R Saving _problems/test_TunerBatchHyperband-58.R Saving _problems/test_TunerBatchHyperband-68.R Saving _problems/test_TunerBatchHyperband-82.R Saving _problems/test_TunerBatchHyperband-167.R Saving _problems/test_TunerBatchHyperband-178.R Saving _problems/test_TunerBatchHyperband-189.R Saving _problems/test_TunerBatchHyperband-203.R Saving _problems/test_TunerBatchHyperband-219.R Saving _problems/test_TunerBatchHyperband-236.R Saving _problems/test_TunerBatchSuccessiveHalving-7.R Saving _problems/test_TunerBatchSuccessiveHalving-16.R Saving _problems/test_TunerBatchSuccessiveHalving-25.R Saving _problems/test_TunerBatchSuccessiveHalving-34.R Saving _problems/test_TunerBatchSuccessiveHalving-43.R Saving _problems/test_TunerBatchSuccessiveHalving-65.R Saving _problems/test_TunerBatchSuccessiveHalving-76.R Saving _problems/test_TunerBatchSuccessiveHalving-85.R Saving _problems/test_TunerBatchSuccessiveHalving-96.R Saving _problems/test_TunerBatchSuccessiveHalving-181.R Saving _problems/test_TunerBatchSuccessiveHalving-191.R Saving _problems/test_TunerBatchSuccessiveHalving-201.R Saving _problems/test_TunerBatchSuccessiveHalving-215.R Saving _problems/test_TunerBatchSuccessiveHalving-231.R Saving _problems/test_TunerBatchSuccessiveHalving-248.R Saving _problems/test_TunerBatchSuccessiveHalving-259.R Saving _problems/test_TunerBatchSuccessiveHalving-268.R Saving _problems/test_TunerBatchSuccessiveHalving-277.R [ FAIL 32 | WARN 0 | SKIP 1 | PASS 36 ] ══ Skipped tests (1) ═══════════════════════════════════════════════════════════ • On CRAN (1): 'test_TunerAsyncSuccessiveHalving.R:1:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_TunerBatchHyperband.R:7:3'): TunerBatchHyperband works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:7:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:16:3'): TunerBatchHyperband works with minimum budget > 1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:16:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:25:3'): TunerBatchHyperband rounds budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:25:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:34:3'): TunerBatchHyperband works with eta = 2.5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2.5, learner) at test_TunerBatchHyperband.R:34:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:47:3'): TunerBatchHyperband works with xgboost ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:47:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:58:3'): TunerBatchHyperband works with subsampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 3, graph_learner) at test_TunerBatchHyperband.R:58:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:68:3'): TunerBatchHyperband works works with multi-crit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:68:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:82:3'): TunerBatchHyperband works with custom sampler ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner, sampler = sampler) at test_TunerBatchHyperband.R:82:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:167:3'): TunerBatchHyperband minimizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:167:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:178:3'): TunerBatchHyperband maximizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(...) at test_TunerBatchHyperband.R:178:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:189:3'): TunerBatchHyperband works with single budget value ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_hyperband(eta = 2, learner) at test_TunerBatchHyperband.R:189:3 2. └─mlr3tuning::tune(...) at ./helper.R:26:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:198:3'): TunerBatchHyperband works with repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:198:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:214:3'): TunerBatchHyperband terminates itself ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:214:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchHyperband.R:230:3'): TunerBatchHyperband works with infinite repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchHyperband.R:230:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchHyperband__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:7:3'): TunerBatchSuccessiveHalving works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:7:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:16:3'): TunerBatchSuccessiveHalving works with minimum budget > 1 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:16:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:25:3'): TunerBatchSuccessiveHalving rounds budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:25:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:34:3'): TunerBatchSuccessiveHalving works with eta = 2.5 ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:34:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:43:3'): TunerBatchSuccessiveHalving adjusts minimum budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:43:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:65:3'): TunerBatchSuccessiveHalving works with xgboost ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:65:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:76:3'): TunerBatchSuccessiveHalving works with subsampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:76:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:85:3'): TunerBatchSuccessiveHalving works with multi-crit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:85:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:96:3'): TunerBatchSuccessiveHalving works with custom sampler ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:96:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:181:3'): TunerBatchSuccessiveHalving minimizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:181:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:191:3'): TunerBatchSuccessiveHalving maximizes measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:191:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:201:3'): TunerBatchSuccessiveHalving works with single budget value ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:201:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:210:3'): TunerBatchSuccessiveHalving works with repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:210:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:226:3'): TunerBatchSuccessiveHalving terminates itself ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:226:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:242:3'): TunerBatchSuccessiveHalving works with infinite repetitions ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchSuccessiveHalving.R:242:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 13. └─inst$eval_batch(xdt) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:259:3'): TunerBatchSuccessiveHalving works with r_max > n ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:259:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:268:3'): TunerBatchSuccessiveHalving works with r_max < n ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:268:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchSuccessiveHalving.R:277:3'): TunerBatchSuccessiveHalving works with r_max < n and adjust minimum budget ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3hyperband:::test_tuner_successive_halving(...) at test_TunerBatchSuccessiveHalving.R:277:3 2. └─mlr3tuning::tune(...) at ./helper.R:61:3 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3hyperband:::.__OptimizerBatchSuccessiveHalving__.optimize(...) 14. └─inst$eval_batch(xdt) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) [ FAIL 32 | WARN 0 | SKIP 1 | PASS 36 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package mlr3learners

Current CRAN status: ERROR: 4, OK: 9

Version: 0.14.0
Check: tests
Result: ERROR Running ‘testthat.R’ [47s/68s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3learners") + test_check("mlr3learners") + } Loading required package: mlr3 Saving _problems/test_classif_cv_glmnet-12.R Saving _problems/test_classif_glmnet-9.R Saving _problems/test_classif_kknn-6.R Saving _problems/test_classif_lda-6.R Saving _problems/test_classif_log_reg-4.R Saving _problems/test_classif_qda-6.R Saving _problems/test_classif_ranger-7.R Saving _problems/test_classif_ranger-105.R Saving _problems/test_classif_svm-6.R Saving _problems/test_regr_cv_glmnet-12.R Saving _problems/test_regr_glmnet-9.R Saving _problems/test_regr_kknn-6.R Saving _problems/test_regr_lm-4.R Saving _problems/test_regr_ranger-6.R Saving _problems/test_regr_ranger-433.R Saving _problems/test_regr_svm-6.R Saving _problems/test_regr_svm-14.R [ FAIL 21 | WARN 0 | SKIP 4 | PASS 614 ] ══ Skipped tests (4) ═══════════════════════════════════════════════════════════ • On CRAN (4): 'test_classif_nnet.R:2:1', 'test_classif_xgboost.R:2:1', 'test_regr_nnet.R:2:1', 'test_regr_xgboost.R:2:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_classif_cv_glmnet.R:12:3'): autotest ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single", N = 100L) at test_classif_cv_glmnet.R:12:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_glmnet.R:9:3'): autotest ─────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_classif_glmnet.R:9:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_kknn.R:6:3'): autotest ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_kknn.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_lda.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_classif_lda.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_log_reg.R:4:3'): autotest ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_log_reg.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_multinom.R:6:19'): autotest ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_classif_multinom.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner) at test_classif_multinom.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_classif_naive_bayes.R:6:19'): autotest ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_classif_naive_bayes.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner) at test_classif_naive_bayes.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_classif_qda.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, N = 100L, exclude = "feat_single") at test_classif_qda.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_ranger.R:7:3'): autotest ─────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_ranger.R:7:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_ranger.R:105:3'): oob_error available without stored model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_classif_ranger.R:105:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_classif_svm.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_svm.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_cv_glmnet.R:12:3'): autotest ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_regr_cv_glmnet.R:12:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_glmnet.R:9:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_regr_glmnet.R:9:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_kknn.R:6:3'): autotest ──────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_kknn.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_km.R:6:19'): autotest ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_regr_km.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner, exclude = "feat_single", N = 50) at test_regr_km.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_regr_km.R:13:19'): autotest w/ jitter ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_regr_km.R:13:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner, exclude = "feat_single|reordered", N = 50) at test_regr_km.R:13:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_regr_lm.R:4:3'): autotest ────────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_lm.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_ranger.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, N = 50L) at test_regr_ranger.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_ranger.R:433:3'): oob_error available without stored model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_regr_ranger.R:433:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_regr_svm.R:6:3'): autotest ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_svm.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_svm.R:14:3'): autotest with type nu-regression (#209) ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_svm.R:14:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) [ FAIL 21 | WARN 0 | SKIP 4 | PASS 614 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.14.0
Check: tests
Result: ERROR Running ‘testthat.R’ [31s/50s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3learners") + test_check("mlr3learners") + } Loading required package: mlr3 Saving _problems/test_classif_cv_glmnet-12.R Saving _problems/test_classif_glmnet-9.R Saving _problems/test_classif_kknn-6.R Saving _problems/test_classif_lda-6.R Saving _problems/test_classif_log_reg-4.R Saving _problems/test_classif_qda-6.R Saving _problems/test_classif_ranger-7.R Saving _problems/test_classif_ranger-105.R Saving _problems/test_classif_svm-6.R Saving _problems/test_regr_cv_glmnet-12.R Saving _problems/test_regr_glmnet-9.R Saving _problems/test_regr_kknn-6.R Saving _problems/test_regr_lm-4.R Saving _problems/test_regr_ranger-6.R Saving _problems/test_regr_ranger-433.R Saving _problems/test_regr_svm-6.R Saving _problems/test_regr_svm-14.R [ FAIL 21 | WARN 0 | SKIP 4 | PASS 614 ] ══ Skipped tests (4) ═══════════════════════════════════════════════════════════ • On CRAN (4): 'test_classif_nnet.R:2:1', 'test_classif_xgboost.R:2:1', 'test_regr_nnet.R:2:1', 'test_regr_xgboost.R:2:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_classif_cv_glmnet.R:12:3'): autotest ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single", N = 100L) at test_classif_cv_glmnet.R:12:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_glmnet.R:9:3'): autotest ─────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_classif_glmnet.R:9:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_kknn.R:6:3'): autotest ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_kknn.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_lda.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_classif_lda.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_log_reg.R:4:3'): autotest ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_log_reg.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_multinom.R:6:19'): autotest ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_classif_multinom.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner) at test_classif_multinom.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_classif_naive_bayes.R:6:19'): autotest ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_classif_naive_bayes.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner) at test_classif_naive_bayes.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_classif_qda.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, N = 100L, exclude = "feat_single") at test_classif_qda.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_ranger.R:7:3'): autotest ─────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_ranger.R:7:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_ranger.R:105:3'): oob_error available without stored model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_classif_ranger.R:105:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_classif_svm.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_svm.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_cv_glmnet.R:12:3'): autotest ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_regr_cv_glmnet.R:12:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_glmnet.R:9:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_regr_glmnet.R:9:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_kknn.R:6:3'): autotest ──────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_kknn.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_km.R:6:19'): autotest ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_regr_km.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner, exclude = "feat_single", N = 50) at test_regr_km.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_regr_km.R:13:19'): autotest w/ jitter ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_regr_km.R:13:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner, exclude = "feat_single|reordered", N = 50) at test_regr_km.R:13:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_regr_lm.R:4:3'): autotest ────────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_lm.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_ranger.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, N = 50L) at test_regr_ranger.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_ranger.R:433:3'): oob_error available without stored model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_regr_ranger.R:433:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_regr_svm.R:6:3'): autotest ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_svm.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_svm.R:14:3'): autotest with type nu-regression (#209) ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_svm.R:14:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) [ FAIL 21 | WARN 0 | SKIP 4 | PASS 614 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.14.0
Check: tests
Result: ERROR Running ‘testthat.R’ [72s/155s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3learners") + test_check("mlr3learners") + } Loading required package: mlr3 Saving _problems/test_classif_cv_glmnet-12.R Saving _problems/test_classif_glmnet-9.R Saving _problems/test_classif_kknn-6.R Saving _problems/test_classif_lda-6.R Saving _problems/test_classif_log_reg-4.R Saving _problems/test_classif_qda-6.R Saving _problems/test_classif_ranger-7.R Saving _problems/test_classif_ranger-105.R Saving _problems/test_classif_svm-6.R Saving _problems/test_regr_cv_glmnet-12.R Saving _problems/test_regr_glmnet-9.R Saving _problems/test_regr_kknn-6.R Saving _problems/test_regr_lm-4.R Saving _problems/test_regr_ranger-6.R Saving _problems/test_regr_ranger-433.R Saving _problems/test_regr_svm-6.R Saving _problems/test_regr_svm-14.R [ FAIL 21 | WARN 0 | SKIP 4 | PASS 614 ] ══ Skipped tests (4) ═══════════════════════════════════════════════════════════ • On CRAN (4): 'test_classif_nnet.R:2:1', 'test_classif_xgboost.R:2:1', 'test_regr_nnet.R:2:1', 'test_regr_xgboost.R:2:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_classif_cv_glmnet.R:12:3'): autotest ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single", N = 100L) at test_classif_cv_glmnet.R:12:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_glmnet.R:9:3'): autotest ─────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_classif_glmnet.R:9:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_kknn.R:6:3'): autotest ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_kknn.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_lda.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_classif_lda.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_log_reg.R:4:3'): autotest ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_log_reg.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_multinom.R:6:19'): autotest ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_classif_multinom.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner) at test_classif_multinom.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_classif_naive_bayes.R:6:19'): autotest ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_classif_naive_bayes.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner) at test_classif_naive_bayes.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_classif_qda.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, N = 100L, exclude = "feat_single") at test_classif_qda.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_ranger.R:7:3'): autotest ─────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_ranger.R:7:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_ranger.R:105:3'): oob_error available without stored model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_classif_ranger.R:105:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_classif_svm.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_svm.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_cv_glmnet.R:12:3'): autotest ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_regr_cv_glmnet.R:12:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_glmnet.R:9:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_regr_glmnet.R:9:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_kknn.R:6:3'): autotest ──────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_kknn.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_km.R:6:19'): autotest ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_regr_km.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner, exclude = "feat_single", N = 50) at test_regr_km.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_regr_km.R:13:19'): autotest w/ jitter ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_regr_km.R:13:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner, exclude = "feat_single|reordered", N = 50) at test_regr_km.R:13:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_regr_lm.R:4:3'): autotest ────────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_lm.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_ranger.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, N = 50L) at test_regr_ranger.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_ranger.R:433:3'): oob_error available without stored model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_regr_ranger.R:433:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_regr_svm.R:6:3'): autotest ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_svm.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_svm.R:14:3'): autotest with type nu-regression (#209) ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_svm.R:14:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) [ FAIL 21 | WARN 0 | SKIP 4 | PASS 614 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.14.0
Check: tests
Result: ERROR Running ‘testthat.R’ [67s/124s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3learners") + test_check("mlr3learners") + } Loading required package: mlr3 Saving _problems/test_classif_cv_glmnet-12.R Saving _problems/test_classif_glmnet-9.R Saving _problems/test_classif_kknn-6.R Saving _problems/test_classif_lda-6.R Saving _problems/test_classif_log_reg-4.R Saving _problems/test_classif_qda-6.R Saving _problems/test_classif_ranger-7.R Saving _problems/test_classif_ranger-105.R Saving _problems/test_classif_svm-6.R Saving _problems/test_regr_cv_glmnet-12.R Saving _problems/test_regr_glmnet-9.R Saving _problems/test_regr_kknn-6.R Saving _problems/test_regr_lm-4.R Saving _problems/test_regr_ranger-6.R Saving _problems/test_regr_ranger-433.R Saving _problems/test_regr_svm-6.R Saving _problems/test_regr_svm-14.R [ FAIL 21 | WARN 0 | SKIP 4 | PASS 614 ] ══ Skipped tests (4) ═══════════════════════════════════════════════════════════ • On CRAN (4): 'test_classif_nnet.R:2:1', 'test_classif_xgboost.R:2:1', 'test_regr_nnet.R:2:1', 'test_regr_xgboost.R:2:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_classif_cv_glmnet.R:12:3'): autotest ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single", N = 100L) at test_classif_cv_glmnet.R:12:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_glmnet.R:9:3'): autotest ─────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_classif_glmnet.R:9:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_kknn.R:6:3'): autotest ───────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_kknn.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_lda.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_classif_lda.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_log_reg.R:4:3'): autotest ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_log_reg.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_multinom.R:6:19'): autotest ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_classif_multinom.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner) at test_classif_multinom.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_classif_naive_bayes.R:6:19'): autotest ───────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_classif_naive_bayes.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner) at test_classif_naive_bayes.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_classif_qda.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, N = 100L, exclude = "feat_single") at test_classif_qda.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_ranger.R:7:3'): autotest ─────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_ranger.R:7:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_classif_ranger.R:105:3'): oob_error available without stored model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_classif_ranger.R:105:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_classif_svm.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_classif_svm.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_cv_glmnet.R:12:3'): autotest ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_regr_cv_glmnet.R:12:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_glmnet.R:9:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, exclude = "feat_single") at test_regr_glmnet.R:9:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_kknn.R:6:3'): autotest ──────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_kknn.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_km.R:6:19'): autotest ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_regr_km.R:6:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner, exclude = "feat_single", N = 50) at test_regr_km.R:6:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_regr_km.R:13:19'): autotest w/ jitter ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─utils::capture.output(...) at test_regr_km.R:13:3 2. │ └─base::withVisible(...elt(i)) 3. └─global run_autotest(learner, exclude = "feat_single|reordered", N = 50) at test_regr_km.R:13:19 4. └─global run_experiment(task, learner, NULL, configure_learner) 5. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 6. └─ResultData$new(data, data_extra, store_backends = store_backends) 7. └─mlr3 (local) initialize(...) 8. └─mlr3:::.__ResultData__initialize(...) 9. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 10. └─data.table:::`[.data.table`(...) ── Error ('test_regr_lm.R:4:3'): autotest ────────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_lm.R:4:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_ranger.R:6:3'): autotest ────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner, N = 50L) at test_regr_ranger.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_ranger.R:433:3'): oob_error available without stored model ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, rsmp("holdout"), store_models = FALSE) at test_regr_ranger.R:433:3 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_regr_svm.R:6:3'): autotest ───────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_svm.R:6:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) ── Error ('test_regr_svm.R:14:3'): autotest with type nu-regression (#209) ───── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global run_autotest(learner) at test_regr_svm.R:14:3 2. └─global run_experiment(task, learner, NULL, configure_learner) 3. └─mlr3::resample(task, learner_encapsulated, rsmp("holdout"), store_models = TRUE) 4. └─ResultData$new(data, data_extra, store_backends = store_backends) 5. └─mlr3 (local) initialize(...) 6. └─mlr3:::.__ResultData__initialize(...) 7. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 8. └─data.table:::`[.data.table`(...) [ FAIL 21 | WARN 0 | SKIP 4 | PASS 614 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package mlr3mbo

Current CRAN status: ERROR: 4, OK: 9

Version: 0.3.3
Check: tests
Result: ERROR Running ‘testthat.R’ [331s/377s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library(testthat) + library(checkmate) + library(mlr3mbo) + test_check("mlr3mbo") + } Loading required package: mlr3tuning Loading required package: mlr3 Loading required package: paradox Attaching package: 'mlr3mbo' The following object is masked from 'package:testthat': it Loading required namespace: mlr3learners Loading required namespace: DiceKriging Loading required namespace: rgenoud WARN [04:36:24.614] [bbotk] Optimizer Error. Saving _problems/test_ResultAssignerArchive-79.R Saving _problems/test_ResultAssignerSurrogate-110.R Saving _problems/test_TunerMbo-52.R Saving _problems/test_TunerMbo-79.R Saving _problems/test_TunerMbo-143.R Saving _problems/test_TunerMbo-158.R [ FAIL 6 | WARN 2 | SKIP 18 | PASS 1043 ] ══ Skipped tests (18) ══════════════════════════════════════════════════════════ • On CRAN (17): 'test_AcqFunctionEHVIGH.R:35:3', 'test_AcqFunctionStochasticCB.R:2:3', 'test_AcqFunctionStochasticCB.R:30:3', 'test_AcqFunctionStochasticCB.R:59:3', 'test_AcqFunctionStochasticCB.R:89:3', 'test_AcqFunctionStochasticCB.R:119:3', 'test_AcqFunctionStochasticEI.R:2:3', 'test_AcqFunctionStochasticEI.R:31:3', 'test_AcqFunctionStochasticEI.R:60:3', 'test_OptimizerADBO.R:2:3', 'test_OptimizerAsyncMbo.R:2:3', 'test_OptimizerAsyncMbo.R:24:3', 'test_OptimizerMbo.R:2:3', 'test_ResultAssignerSurrogate.R:16:3', 'test_TunerADBO.R:2:3', 'test_TunerAsyncMbo.R:2:3', 'test_TunerMbo.R:2:3' • empty test (1): 'test_bayesopt_ego.R:55:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ResultAssignerArchive.R:79:3'): ResultAssignerArchive passes internal tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1L) at test_ResultAssignerArchive.R:79:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 14. ├─mlr3misc::invoke(...) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─self$loop_function(...) 19. └─instance$eval_batch(design) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test_ResultAssignerSurrogate.R:110:3'): ResultAssignerSurrogate passes internal tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1L) at test_ResultAssignerSurrogate.R:110:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 14. ├─mlr3misc::invoke(...) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─self$loop_function(...) 19. └─instance$eval_batch(design) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:52:3'): Constructing TunerMbo and ABs ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:52:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:72:3'): TunerMbo sugar ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerMbo.R:72:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─self$loop_function(...) 18. └─instance$eval_batch(design) 19. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 20. └─self$objective$eval_many(xss_trafoed) 21. └─bbotk:::.__Objective__eval_many(...) 22. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 23. │ └─base::eval.parent(expr, n = 1L) 24. │ └─base::eval(expr, p) 25. │ └─base::eval(expr, p) 26. └─private$.eval_many(xss = xss, resampling = `<list>`) 27. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 28. └─mlr3::benchmark(...) 29. └─ResultData$new(grid, data_extra, store_backends = store_backends) 30. └─mlr3 (local) initialize(...) 31. └─mlr3:::.__ResultData__initialize(...) 32. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 33. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:143:3'): TunerMbo args ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:143:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:158:3'): TunerMbo reset ───────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:158:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) [ FAIL 6 | WARN 2 | SKIP 18 | PASS 1043 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.3.3
Check: tests
Result: ERROR Running ‘testthat.R’ [248s/291s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library(testthat) + library(checkmate) + library(mlr3mbo) + test_check("mlr3mbo") + } Loading required package: mlr3tuning Loading required package: mlr3 Loading required package: paradox Attaching package: 'mlr3mbo' The following object is masked from 'package:testthat': it Loading required namespace: mlr3learners Loading required namespace: DiceKriging Loading required namespace: rgenoud WARN [17:19:19.461] [bbotk] Optimizer Error. Saving _problems/test_ResultAssignerArchive-79.R Saving _problems/test_ResultAssignerSurrogate-110.R Saving _problems/test_TunerMbo-52.R Saving _problems/test_TunerMbo-79.R Saving _problems/test_TunerMbo-143.R Saving _problems/test_TunerMbo-158.R [ FAIL 6 | WARN 2 | SKIP 18 | PASS 1043 ] ══ Skipped tests (18) ══════════════════════════════════════════════════════════ • On CRAN (17): 'test_AcqFunctionEHVIGH.R:35:3', 'test_AcqFunctionStochasticCB.R:2:3', 'test_AcqFunctionStochasticCB.R:30:3', 'test_AcqFunctionStochasticCB.R:59:3', 'test_AcqFunctionStochasticCB.R:89:3', 'test_AcqFunctionStochasticCB.R:119:3', 'test_AcqFunctionStochasticEI.R:2:3', 'test_AcqFunctionStochasticEI.R:31:3', 'test_AcqFunctionStochasticEI.R:60:3', 'test_OptimizerADBO.R:2:3', 'test_OptimizerAsyncMbo.R:2:3', 'test_OptimizerAsyncMbo.R:24:3', 'test_OptimizerMbo.R:2:3', 'test_ResultAssignerSurrogate.R:16:3', 'test_TunerADBO.R:2:3', 'test_TunerAsyncMbo.R:2:3', 'test_TunerMbo.R:2:3' • empty test (1): 'test_bayesopt_ego.R:55:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ResultAssignerArchive.R:79:3'): ResultAssignerArchive passes internal tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1L) at test_ResultAssignerArchive.R:79:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 14. ├─mlr3misc::invoke(...) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─self$loop_function(...) 19. └─instance$eval_batch(design) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test_ResultAssignerSurrogate.R:110:3'): ResultAssignerSurrogate passes internal tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1L) at test_ResultAssignerSurrogate.R:110:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 14. ├─mlr3misc::invoke(...) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─self$loop_function(...) 19. └─instance$eval_batch(design) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:52:3'): Constructing TunerMbo and ABs ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:52:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:72:3'): TunerMbo sugar ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerMbo.R:72:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─self$loop_function(...) 18. └─instance$eval_batch(design) 19. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 20. └─self$objective$eval_many(xss_trafoed) 21. └─bbotk:::.__Objective__eval_many(...) 22. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 23. │ └─base::eval.parent(expr, n = 1L) 24. │ └─base::eval(expr, p) 25. │ └─base::eval(expr, p) 26. └─private$.eval_many(xss = xss, resampling = `<list>`) 27. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 28. └─mlr3::benchmark(...) 29. └─ResultData$new(grid, data_extra, store_backends = store_backends) 30. └─mlr3 (local) initialize(...) 31. └─mlr3:::.__ResultData__initialize(...) 32. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 33. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:143:3'): TunerMbo args ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:143:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:158:3'): TunerMbo reset ───────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:158:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) [ FAIL 6 | WARN 2 | SKIP 18 | PASS 1043 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.3.3
Check: tests
Result: ERROR Running ‘testthat.R’ [9m/17m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library(testthat) + library(checkmate) + library(mlr3mbo) + test_check("mlr3mbo") + } Loading required package: mlr3tuning Loading required package: mlr3 Loading required package: paradox Attaching package: 'mlr3mbo' The following object is masked from 'package:testthat': it Loading required namespace: mlr3learners Loading required namespace: DiceKriging Loading required namespace: rgenoud WARN [17:53:07.134] [bbotk] Optimizer Error. Saving _problems/test_ResultAssignerArchive-79.R Saving _problems/test_ResultAssignerSurrogate-110.R Saving _problems/test_TunerMbo-52.R Saving _problems/test_TunerMbo-79.R Saving _problems/test_TunerMbo-143.R Saving _problems/test_TunerMbo-158.R [ FAIL 6 | WARN 2 | SKIP 18 | PASS 1043 ] ══ Skipped tests (18) ══════════════════════════════════════════════════════════ • On CRAN (17): 'test_AcqFunctionEHVIGH.R:35:3', 'test_AcqFunctionStochasticCB.R:2:3', 'test_AcqFunctionStochasticCB.R:30:3', 'test_AcqFunctionStochasticCB.R:59:3', 'test_AcqFunctionStochasticCB.R:89:3', 'test_AcqFunctionStochasticCB.R:119:3', 'test_AcqFunctionStochasticEI.R:2:3', 'test_AcqFunctionStochasticEI.R:31:3', 'test_AcqFunctionStochasticEI.R:60:3', 'test_OptimizerADBO.R:2:3', 'test_OptimizerAsyncMbo.R:2:3', 'test_OptimizerAsyncMbo.R:24:3', 'test_OptimizerMbo.R:2:3', 'test_ResultAssignerSurrogate.R:16:3', 'test_TunerADBO.R:2:3', 'test_TunerAsyncMbo.R:2:3', 'test_TunerMbo.R:2:3' • empty test (1): 'test_bayesopt_ego.R:55:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ResultAssignerArchive.R:79:3'): ResultAssignerArchive passes internal tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1L) at test_ResultAssignerArchive.R:79:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 14. ├─mlr3misc::invoke(...) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─self$loop_function(...) 19. └─instance$eval_batch(design) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test_ResultAssignerSurrogate.R:110:3'): ResultAssignerSurrogate passes internal tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1L) at test_ResultAssignerSurrogate.R:110:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 14. ├─mlr3misc::invoke(...) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─self$loop_function(...) 19. └─instance$eval_batch(design) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:52:3'): Constructing TunerMbo and ABs ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:52:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:72:3'): TunerMbo sugar ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerMbo.R:72:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─self$loop_function(...) 18. └─instance$eval_batch(design) 19. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 20. └─self$objective$eval_many(xss_trafoed) 21. └─bbotk:::.__Objective__eval_many(...) 22. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 23. │ └─base::eval.parent(expr, n = 1L) 24. │ └─base::eval(expr, p) 25. │ └─base::eval(expr, p) 26. └─private$.eval_many(xss = xss, resampling = `<list>`) 27. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 28. └─mlr3::benchmark(...) 29. └─ResultData$new(grid, data_extra, store_backends = store_backends) 30. └─mlr3 (local) initialize(...) 31. └─mlr3:::.__ResultData__initialize(...) 32. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 33. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:143:3'): TunerMbo args ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:143:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:158:3'): TunerMbo reset ───────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:158:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) [ FAIL 6 | WARN 2 | SKIP 18 | PASS 1043 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.3.3
Check: tests
Result: ERROR Running ‘testthat.R’ [8m/11m] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library(testthat) + library(checkmate) + library(mlr3mbo) + test_check("mlr3mbo") + } Loading required package: mlr3tuning Loading required package: mlr3 Loading required package: paradox Attaching package: 'mlr3mbo' The following object is masked from 'package:testthat': it Loading required namespace: mlr3learners Loading required namespace: DiceKriging Loading required namespace: rgenoud WARN [12:33:12.193] [bbotk] Optimizer Error. Saving _problems/test_ResultAssignerArchive-79.R Saving _problems/test_ResultAssignerSurrogate-110.R Saving _problems/test_TunerMbo-52.R Saving _problems/test_TunerMbo-79.R Saving _problems/test_TunerMbo-143.R Saving _problems/test_TunerMbo-158.R [ FAIL 6 | WARN 2 | SKIP 18 | PASS 1043 ] ══ Skipped tests (18) ══════════════════════════════════════════════════════════ • On CRAN (17): 'test_AcqFunctionEHVIGH.R:35:3', 'test_AcqFunctionStochasticCB.R:2:3', 'test_AcqFunctionStochasticCB.R:30:3', 'test_AcqFunctionStochasticCB.R:59:3', 'test_AcqFunctionStochasticCB.R:89:3', 'test_AcqFunctionStochasticCB.R:119:3', 'test_AcqFunctionStochasticEI.R:2:3', 'test_AcqFunctionStochasticEI.R:31:3', 'test_AcqFunctionStochasticEI.R:60:3', 'test_OptimizerADBO.R:2:3', 'test_OptimizerAsyncMbo.R:2:3', 'test_OptimizerAsyncMbo.R:24:3', 'test_OptimizerMbo.R:2:3', 'test_ResultAssignerSurrogate.R:16:3', 'test_TunerADBO.R:2:3', 'test_TunerAsyncMbo.R:2:3', 'test_TunerMbo.R:2:3' • empty test (1): 'test_bayesopt_ego.R:55:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ResultAssignerArchive.R:79:3'): ResultAssignerArchive passes internal tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1L) at test_ResultAssignerArchive.R:79:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 14. ├─mlr3misc::invoke(...) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─self$loop_function(...) 19. └─instance$eval_batch(design) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test_ResultAssignerSurrogate.R:110:3'): ResultAssignerSurrogate passes internal tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1L) at test_ResultAssignerSurrogate.R:110:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 14. ├─mlr3misc::invoke(...) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─self$loop_function(...) 19. └─instance$eval_batch(design) 20. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 21. └─self$objective$eval_many(xss_trafoed) 22. └─bbotk:::.__Objective__eval_many(...) 23. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 24. │ └─base::eval.parent(expr, n = 1L) 25. │ └─base::eval(expr, p) 26. │ └─base::eval(expr, p) 27. └─private$.eval_many(xss = xss, resampling = `<list>`) 28. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 29. └─mlr3::benchmark(...) 30. └─ResultData$new(grid, data_extra, store_backends = store_backends) 31. └─mlr3 (local) initialize(...) 32. └─mlr3:::.__ResultData__initialize(...) 33. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 34. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:52:3'): Constructing TunerMbo and ABs ─────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:52:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:72:3'): TunerMbo sugar ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerMbo.R:72:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─self$loop_function(...) 18. └─instance$eval_batch(design) 19. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 20. └─self$objective$eval_many(xss_trafoed) 21. └─bbotk:::.__Objective__eval_many(...) 22. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 23. │ └─base::eval.parent(expr, n = 1L) 24. │ └─base::eval(expr, p) 25. │ └─base::eval(expr, p) 26. └─private$.eval_many(xss = xss, resampling = `<list>`) 27. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 28. └─mlr3::benchmark(...) 29. └─ResultData$new(grid, data_extra, store_backends = store_backends) 30. └─mlr3 (local) initialize(...) 31. └─mlr3:::.__ResultData__initialize(...) 32. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 33. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:143:3'): TunerMbo args ────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:143:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerMbo.R:158:3'): TunerMbo reset ───────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerMbo.R:158:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─mlr3mbo:::.__OptimizerMbo__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─mlr3mbo:::.__OptimizerMbo__.optimize(...) 12. ├─mlr3misc::invoke(...) 13. │ └─base::eval.parent(expr, n = 1L) 14. │ └─base::eval(expr, p) 15. │ └─base::eval(expr, p) 16. └─self$loop_function(...) 17. └─instance$eval_batch(design) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) [ FAIL 6 | WARN 2 | SKIP 18 | PASS 1043 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package mlr3measures

Current CRAN status: OK: 13

Package mlr3misc

Current CRAN status: OK: 13

Package mlr3spatial

Current CRAN status: OK: 13

Package mlr3tuning

Current CRAN status: ERROR: 5, OK: 8

Version: 1.5.1
Check: examples
Result: ERROR Running examples in ‘mlr3tuning-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: AutoTuner > ### Title: Class for Automatic Tuning > ### Aliases: AutoTuner > > ### ** Examples > > # Automatic Tuning > > # split to train and external set > task = tsk("penguins") > split = partition(task, ratio = 0.8) > > # load learner and set search space > learner = lrn("classif.rpart", + cp = to_tune(1e-04, 1e-1, logscale = TRUE) + ) > > # create auto tuner > at = auto_tuner( + tuner = tnr("random_search"), + learner = learner, + resampling = rsmp ("holdout"), + measure = msr("classif.ce"), + term_evals = 4) > > # tune hyperparameters and fit final model > at$train(task, row_ids = split$train) INFO [04:35:35.454] [bbotk] Starting to optimize 1 parameter(s) with '<OptimizerBatchRandomSearch>' and '<TerminatorEvals> [n_evals=4, k=0]' INFO [04:35:35.685] [bbotk] Evaluating 1 configuration(s) INFO [04:35:35.743] [mlr3] Running benchmark with 1 resampling iterations INFO [04:35:35.932] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 1/1) INFO [04:35:36.006] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.5.1
Check: tests
Result: ERROR Running ‘testthat.R’ [98s/110s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3tuning") + test_check("mlr3tuning") + } Loading required package: mlr3 Loading required package: paradox Saving _problems/test_ArchiveBatchTuning-11.R Saving _problems/test_ArchiveBatchTuning-126.R Saving _problems/test_ArchiveBatchTuning-277.R Saving _problems/test_AutoTuner-10.R Saving _problems/test_AutoTuner-42.R Saving _problems/test_AutoTuner-77.R Saving _problems/test_AutoTuner-93.R Saving _problems/test_AutoTuner-118.R Saving _problems/test_AutoTuner-155.R Saving _problems/test_AutoTuner-184.R Saving _problems/test_AutoTuner-246.R Saving _problems/test_AutoTuner-282.R Saving _problems/test_AutoTuner-308.R Saving _problems/test_AutoTuner-373.R Saving _problems/test_AutoTuner-389.R Saving _problems/test_AutoTuner-420.R Saving _problems/test_AutoTuner-434.R Saving _problems/test_AutoTuner-480.R Saving _problems/test_AutoTuner-606.R Saving _problems/test_AutoTuner-625.R Saving _problems/test_AutoTuner-676.R Saving _problems/test_AutoTuner-699.R Saving _problems/test_CallbackBatchTuning-17.R Saving _problems/test_CallbackBatchTuning-37.R Saving _problems/test_CallbackBatchTuning-59.R Saving _problems/test_CallbackBatchTuning-80.R Saving _problems/test_CallbackBatchTuning-103.R Saving _problems/test_CallbackBatchTuning-127.R Saving _problems/test_CallbackBatchTuning-150.R Saving _problems/test_CallbackBatchTuning-171.R Saving _problems/test_CallbackBatchTuning-191.R Saving _problems/test_CallbackBatchTuning-214.R Saving _problems/test_CallbackBatchTuning-235.R Saving _problems/test_CallbackBatchTuning-255.R Saving _problems/test_CallbackBatchTuning-284.R Saving _problems/test_CallbackBatchTuning-312.R Saving _problems/test_CallbackBatchTuning-339.R Saving _problems/test_CallbackBatchTuning-367.R Saving _problems/test_ObjectiveTuningAsync-12.R Saving _problems/test_ObjectiveTuningAsync-32.R Saving _problems/test_ObjectiveTuningAsync-54.R Saving _problems/test_ObjectiveTuningAsync-76.R Saving _problems/test_ObjectiveTuningBatch-14.R Saving _problems/test_ObjectiveTuningBatch-37.R Saving _problems/test_ObjectiveTuningBatch-52.R Saving _problems/test_ObjectiveTuningBatch-69.R Saving _problems/test_ObjectiveTuningBatch-105.R Saving _problems/test_ObjectiveTuningBatch-128.R Saving _problems/test_ObjectiveTuningBatch-149.R Saving _problems/test_Tuner-5.R Saving _problems/test_Tuner-46.R Saving _problems/test_Tuner-90.R Saving _problems/test_Tuner-121.R Saving _problems/test_Tuner-188.R Saving _problems/test_Tuner-212.R Saving _problems/test_Tuner-242.R Saving _problems/test_Tuner-294.R Saving _problems/test_Tuner-336.R Saving _problems/test_Tuner-355.R Saving _problems/test_TunerBatchCmaes-19.R Saving _problems/test_TunerBatchDesignPoints-3.R Saving _problems/test_TunerBatchFromOptimizerBatch-13.R Saving _problems/test_TunerBatchGenSA-4.R Saving _problems/test_TunerBatchGenSA-23.R Saving _problems/test_TunerBatchGenSA-31.R Saving _problems/test_TunerBatchGridSearch-2.R Saving _problems/test_TunerBatchGridSearch-22.R # 2025-12-20 04:36:36 CET: Initialization # Elitist race # Elitist new instances: 1 # Elitist limit: 2 # nbIterations: 2 # minNbSurvival: 2 # nbParameters: 1 # seed: 572377441 # confidence level: 0.95 # budget: 42 # mu: 5 # deterministic: FALSE # 2025-12-20 04:36:36 CET: Iteration 1 of 2 # experimentsUsed: 0 # remainingBudget: 42 # currentBudget: 21 # nbConfigurations: 3 # Markers: x No test is performed. c Configurations are discarded only due to capping. - The test is performed and some configurations are discarded. = The test is performed but no configuration is discarded. ! The test is performed and configurations could be discarded but elite configurations are preserved. . All alive configurations are elite and nothing is discarded. +-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+ | | Instance| Alive| Best| Mean best| Exp so far| W time| rho|KenW| Qvar| +-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+ Saving _problems/test_TunerBatchIrace-4.R Saving _problems/test_TunerBatchNLoptr-5.R Saving _problems/test_TunerBatchRandomSearch-2.R Saving _problems/test_TunerInternal-18.R Saving _problems/test_TuningInstanceBatchMultiCrit-19.R Saving _problems/test_TuningInstanceBatchMultiCrit-35.R Saving _problems/test_TuningInstanceBatchMultiCrit-64.R Saving _problems/test_TuningInstanceBatchMultiCrit-114.R Saving _problems/test_TuningInstanceBatchMultiCrit-129.R Saving _problems/test_TuningInstanceBatchMultiCrit-186.R Saving _problems/test_TuningInstanceBatchSingleCrit-9.R Saving _problems/test_TuningInstanceBatchSingleCrit-46.R Saving _problems/test_TuningInstanceBatchSingleCrit-55.R Saving _problems/test_TuningInstanceBatchSingleCrit-76.R Saving _problems/test_TuningInstanceBatchSingleCrit-99.R Saving _problems/test_TuningInstanceBatchSingleCrit-128.R Saving _problems/test_TuningInstanceBatchSingleCrit-136.R Saving _problems/test_TuningInstanceBatchSingleCrit-170.R Saving _problems/test_TuningInstanceBatchSingleCrit-220.R Saving _problems/test_TuningInstanceBatchSingleCrit-237.R Saving _problems/test_TuningInstanceBatchSingleCrit-413.R Saving _problems/test_TuningInstanceBatchSingleCrit-428.R Saving _problems/test_TuningInstanceBatchSingleCrit-459.R Saving _problems/test_TuningInstanceBatchSingleCrit-484.R Saving _problems/test_error_handling-12.R Saving _problems/test_error_handling-36.R Saving _problems/test_extract_inner_tuning_archives-11.R Saving _problems/test_extract_inner_tuning_archives-131.R Saving _problems/test_extract_inner_tuning_results-11.R Saving _problems/test_extract_inner_tuning_results-131.R Saving _problems/test_mlr_callbacks-14.R Saving _problems/test_mlr_callbacks-31.R Saving _problems/test_mlr_callbacks-290.R Saving _problems/test_mlr_callbacks-307.R Saving _problems/test_mlr_callbacks-340.R Saving _problems/test_mlr_callbacks-445.R Saving _problems/test_trafos-10.R Saving _problems/test_trafos-34.R Saving _problems/test_tune-4.R Saving _problems/test_tune-14.R Saving _problems/test_tune-24.R Saving _problems/test_tune_nested-6.R [ FAIL 113 | WARN 9 | SKIP 68 | PASS 191 ] ══ Skipped tests (68) ══════════════════════════════════════════════════════════ • On CRAN (68): 'test_ArchiveAsyncTuning.R:2:3', 'test_ArchiveAsyncTuning.R:61:3', 'test_ArchiveAsyncTuning.R:119:3', 'test_ArchiveAsyncTuning.R:146:3', 'test_ArchiveAsyncTuning.R:169:3', 'test_ArchiveAsyncTuning.R:209:3', 'test_ArchiveAsyncTuning.R:251:3', 'test_ArchiveAsyncTuning.R:284:3', 'test_ArchiveAsyncTuningFrozen.R:2:3', 'test_AutoTuner.R:640:3', 'test_CallbackAsyncTuning.R:4:3', 'test_CallbackAsyncTuning.R:33:3', 'test_CallbackAsyncTuning.R:64:3', 'test_CallbackAsyncTuning.R:93:3', 'test_CallbackAsyncTuning.R:124:3', 'test_CallbackAsyncTuning.R:160:3', 'test_CallbackAsyncTuning.R:188:3', 'test_CallbackAsyncTuning.R:222:3', 'test_CallbackAsyncTuning.R:252:3', 'test_CallbackAsyncTuning.R:281:3', 'test_CallbackAsyncTuning.R:312:3', 'test_CallbackAsyncTuning.R:343:3', 'test_CallbackAsyncTuning.R:373:3', 'test_CallbackAsyncTuning.R:405:3', 'test_CallbackAsyncTuning.R:443:3', 'test_CallbackAsyncTuning.R:480:3', 'test_CallbackAsyncTuning.R:516:3', 'test_Tuner.R:53:1', 'test_TunerAsyncDesignPoints.R:2:3', 'test_TunerAsyncGridSearch.R:2:3', 'test_TunerAsyncRandomSearch.R:2:3', 'test_TuningInstanceAsyncMultiCrit.R:2:3', 'test_TuningInstanceAsyncMultiCrit.R:30:3', 'test_TuningInstanceAsyncMultiCrit.R:57:3', 'test_TuningInstanceAsyncMultiCrit.R:81:3', 'test_TuningInstanceAsyncMultiCrit.R:106:3', 'test_TuningInstanceAsyncMultiCrit.R:134:3', 'test_TuningInstanceAsyncMultiCrit.R:189:3', 'test_TuningInstanceAsyncMultiCrit.R:236:3', 'test_TuningInstanceAsyncMultiCrit.R:261:3', 'test_TuningInstanceAsyncSingleCrit.R:2:3', 'test_TuningInstanceAsyncSingleCrit.R:29:3', 'test_TuningInstanceAsyncSingleCrit.R:54:3', 'test_TuningInstanceAsyncSingleCrit.R:78:3', 'test_TuningInstanceAsyncSingleCrit.R:104:3', 'test_TuningInstanceAsyncSingleCrit.R:131:3', 'test_TuningInstanceAsyncSingleCrit.R:182:3', 'test_TuningInstanceAsyncSingleCrit.R:213:3', 'test_TuningInstanceAsyncSingleCrit.R:226:3', 'test_TuningInstanceAsyncSingleCrit.R:240:3', 'test_TuningInstanceAsyncSingleCrit.R:266:3', 'test_auto_tuner.R:25:3', 'test_auto_tuner.R:48:3', 'test_mlr_callbacks.R:40:3', 'test_mlr_callbacks.R:93:3', 'test_mlr_callbacks.R:117:3', 'test_mlr_callbacks.R:141:3', 'test_mlr_callbacks.R:162:3', 'test_mlr_callbacks.R:192:3', 'test_mlr_callbacks.R:218:3', 'test_mlr_callbacks.R:251:3', 'test_mlr_callbacks.R:410:3', 'test_mlr_callbacks.R:452:3', 'test_mlr_callbacks.R:480:3', 'test_ti_async.R:2:3', 'test_ti_async.R:16:3', 'test_ti_async.R:30:3', 'test_ti_async.R:42:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ArchiveBatchTuning.R:11:3'): ArchiveTuning access methods work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:11:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchTuning.R:126:3'): ArchiveTuning as.data.table function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:126:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchTuning.R:277:3'): ArchiveBatchTuning as.data.table function works for internally tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:277:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:10:3'): AutoTuner / train+predict ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:10:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:42:3'): AutoTuner / resample ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, r_outer, store_models = TRUE) at test_AutoTuner.R:42:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:77:3'): nested resamppling results are consistent ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), lrn, cv2, store_models = TRUE) at test_AutoTuner.R:77:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:93:3'): AT training does not change learner in instance args ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:93:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:118:3'): AutoTuner works with graphlearner ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:118:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:155:3'): Nested resampling works with graphlearner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_AutoTuner.R:155:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:184:3'): store_tuning_instance, store_benchmark_result and store_models flags work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:184:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:246:3'): predict_type works ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:246:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:282:3'): search space from TuneToken works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("iris")) at test_AutoTuner.R:282:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:308:3'): AutoTuner get_base_learner method works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("pima")) at test_AutoTuner.R:308:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:373:3'): AutoTuner hash works #647 in mlr3 ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_AutoTuner.R:373:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:389:3'): AutoTuner works with empty search space ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("pima")) at test_AutoTuner.R:389:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:420:3'): AutoTuner importance method works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("penguins")) at test_AutoTuner.R:420:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:434:3'): AutoTuner selected_features method works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("penguins")) at test_AutoTuner.R:434:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:480:3'): AutoTuner works with instantiated resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:480:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:606:3'): marshalable learner ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:606:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:625:3'): marshal ─────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:625:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:676:3'): AutoTuner works with internal tuning and validation ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:676:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:699:3'): AutoTuner works when internal_search_space is part of primary search space ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:699:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:10:3'): on_optimization_begin works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:10:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:30:3'): on_optimization_end works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:30:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:52:3'): on_optimizer_after_eval works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:52:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:73:3'): on_optimizer_after_eval works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:73:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:96:3'): on_eval_after_design works ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:96:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:120:3'): on_eval_after_benchmark and on_eval_before_archive works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:120:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:143:3'): on_tuning_result_begin in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:143:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:164:3'): on_result_end in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:164:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:184:3'): on_result in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:184:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:207:3'): on_tuning_result_begin in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:207:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:228:3'): on_result_end in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:228:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:248:3'): on_result in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:248:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:277:3'): on_resample_begin works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:277:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:305:3'): on_resample_before_train works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:305:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:332:3'): on_resample_before_predict works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:332:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:360:3'): on_resample_end works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:360:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:12:3'): objective async works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:12:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:32:3'): store benchmark result works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:32:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:54:3'): store models works ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:54:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:76:3'): rush objective with multiple measures works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:76:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:14:3'): ObjectiveTuningBatch ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:14:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:37:3'): ObjectiveTuningBatch - Multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:37:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:52:3'): ObjectiveTuningBatch - Store models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:52:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:69:3'): runtime of learners is added ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:69:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:105:3'): tuner can modify resampling ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─instance$eval_batch(data.table(cp = 0.001)) at test_ObjectiveTuningBatch.R:105:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:128:3'): benchmark clone works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, clone = c()) at test_ObjectiveTuningBatch.R:128:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:149:3'): objects are cloned ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:149:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:5:5'): API ───────────────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(rs$optimize(inst), nrows = 1) at test_Tuner.R:5:5 2. │ └─checkmate::checkDataTable(...) 3. └─rs$optimize(inst) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:46:3'): we get a result when some subordinate params are not fulfilled ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(d) at test_Tuner.R:46:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:90:3'): Tuner works with graphlearner ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_Tuner.R:90:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:121:3'): Tuner works with instantiated resampling ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─rs$optimize(inst) at test_Tuner.R:121:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:182:3'): internal single crit ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:182:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:205:3'): internal single crit without benchmark_result ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:205:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:235:3'): internal multi crit ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:235:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:294:3'): internal tuning: branching ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_Tuner.R:294:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:325:3'): parameter transformations can be used with internal tuning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:325:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:348:3'): tag internal tune token manually in primary search space ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:348:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchCmaes.R:12:3'): TunerBatchCmaes ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchCmaes.R:12:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchCmaes__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─adagio::pureCMAES(...) 18. └─adagio (local) fun(arx[, k]) 19. └─bbotk (local) fct(x, ...) 20. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 21. └─private$.objective_function(x, self, self$objective_multiplicator) 22. └─inst$eval_batch(xdt) 23. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 24. └─self$objective$eval_many(xss_trafoed) 25. └─bbotk:::.__Objective__eval_many(...) 26. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 27. │ └─base::eval.parent(expr, n = 1L) 28. │ └─base::eval(expr, p) 29. │ └─base::eval(expr, p) 30. └─private$.eval_many(xss = xss, resampling = `<list>`) 31. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 32. └─mlr3::benchmark(...) 33. └─ResultData$new(grid, data_extra, store_backends = store_backends) 34. └─mlr3 (local) initialize(...) 35. └─mlr3:::.__ResultData__initialize(...) 36. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 37. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchDesignPoints.R:3:3'): TunerBatchDesignPoints ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner(...) at test_TunerBatchDesignPoints.R:3:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchFromOptimizerBatch.R:13:3'): TunerBatchFromOptimizerBatch parameter set works after cloning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner_2$optimize(instance) at test_TunerBatchFromOptimizerBatch.R:13:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:4:3'): TunerBatchGenSA ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global test_tuner("gensa") at test_TunerBatchGenSA.R:4:3 2. │ └─tuner$optimize(inst) 3. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. │ └─private$.optimizer$optimize(inst) 5. │ └─bbotk:::.__OptimizerBatch__optimize(...) 6. │ └─bbotk::optimize_batch_default(inst, self) 7. │ ├─base::tryCatch(...) 8. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. │ └─get_private(optimizer)$.optimize(instance) 12. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 13. │ └─GenSA::GenSA(...) 14. └─GenSA (local) `<fn>`(`<dbl>`) 15. └─bbotk (local) fn(par, ...) 16. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 17. └─private$.objective_function(x, self, self$objective_multiplicator) 18. └─inst$eval_batch(xdt) 19. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 20. └─self$objective$eval_many(xss_trafoed) 21. └─bbotk:::.__Objective__eval_many(...) 22. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 23. │ └─base::eval.parent(expr, n = 1L) 24. │ └─base::eval(expr, p) 25. │ └─base::eval(expr, p) 26. └─private$.eval_many(xss = xss, resampling = `<list>`) 27. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 28. └─mlr3::benchmark(...) 29. └─ResultData$new(grid, data_extra, store_backends = store_backends) 30. └─mlr3 (local) initialize(...) 31. └─mlr3:::.__ResultData__initialize(...) 32. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 33. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:23:3'): TunerBatchGenSA with int params and trafo ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─tt$optimize(inst) at test_TunerBatchGenSA.R:23:3 2. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. │ └─private$.optimizer$optimize(inst) 4. │ └─bbotk:::.__OptimizerBatch__optimize(...) 5. │ └─bbotk::optimize_batch_default(inst, self) 6. │ ├─base::tryCatch(...) 7. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. │ └─get_private(optimizer)$.optimize(instance) 11. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 12. │ └─GenSA::GenSA(...) 13. └─GenSA (local) `<fn>`(`<dbl>`) 14. └─bbotk (local) fn(par, ...) 15. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 16. └─private$.objective_function(x, self, self$objective_multiplicator) 17. └─inst$eval_batch(xdt) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:31:3'): TunerBatchGenSA - Optimize wrapper with maximize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─tt$optimize(inst) at test_TunerBatchGenSA.R:31:3 2. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. │ └─private$.optimizer$optimize(inst) 4. │ └─bbotk:::.__OptimizerBatch__optimize(...) 5. │ └─bbotk::optimize_batch_default(inst, self) 6. │ ├─base::tryCatch(...) 7. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. │ └─get_private(optimizer)$.optimize(instance) 11. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 12. │ └─GenSA::GenSA(...) 13. └─GenSA (local) `<fn>`(`<dbl>`) 14. └─bbotk (local) fn(par, ...) 15. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 16. └─private$.objective_function(x, self, self$objective_multiplicator) 17. └─inst$eval_batch(xdt) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGridSearch.R:2:3'): TunerGridSearch ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner(...) at test_TunerBatchGridSearch.R:2:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGridSearch.R:22:3'): TunerGridSearch with TerminatorNone ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TunerBatchGridSearch.R:22:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:4:3'): TunerIrace ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("irace", term_evals = 42) at test_TunerBatchIrace.R:4:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 13. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─irace::irace(scenario = scenario) 18. └─irace:::irace_common(scenario, simple = TRUE) 19. └─irace:::irace_run(scenario = scenario) 20. └─irace:::elitist_race(...) 21. └─irace:::race_wrapper(...) 22. └─irace:::race_wrapper_helper(...) 23. └─irace:::execute_experiments(...) 24. └─scenario$targetRunnerParallel(...) 25. └─tuning_instance$eval_batch(xdt) 26. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 27. └─self$objective$eval_many(xss_trafoed) 28. └─bbotk:::.__Objective__eval_many(...) 29. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 30. │ └─base::eval.parent(expr, n = 1L) 31. │ └─base::eval(expr, p) 32. │ └─base::eval(expr, p) 33. └─private$.eval_many(xss = xss, resampling = `<list>`) 34. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 35. └─mlr3::benchmark(...) 36. └─ResultData$new(grid, data_extra, store_backends = store_backends) 37. └─mlr3 (local) initialize(...) 38. └─mlr3:::.__ResultData__initialize(...) 39. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 40. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:37:36'): TunerIrace works with dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:37:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. └─tuner$optimize(instance) at test_TunerBatchIrace.R:37:36 6. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 7. └─private$.optimizer$optimize(inst) 8. └─bbotk:::.__OptimizerBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 16. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─irace::irace(scenario = scenario) 21. └─irace:::irace_common(scenario, simple = TRUE) 22. └─irace:::irace_run(scenario = scenario) 23. └─irace:::elitist_race(...) 24. └─irace:::race_wrapper(...) 25. └─irace:::race_wrapper_helper(...) 26. └─irace:::execute_experiments(...) 27. └─scenario$targetRunnerParallel(...) 28. └─tuning_instance$eval_batch(xdt) 29. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 30. └─self$objective$eval_many(xss_trafoed) 31. └─bbotk:::.__Objective__eval_many(...) 32. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 33. │ └─base::eval.parent(expr, n = 1L) 34. │ └─base::eval(expr, p) 35. │ └─base::eval(expr, p) 36. └─private$.eval_many(xss = xss, resampling = `<list>`) 37. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 38. └─mlr3::benchmark(...) 39. └─ResultData$new(grid, data_extra, store_backends = store_backends) 40. └─mlr3 (local) initialize(...) 41. └─mlr3:::.__ResultData__initialize(...) 42. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 43. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:56:36'): TunerIrace works with logical parameters ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:56:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. └─tuner$optimize(instance) at test_TunerBatchIrace.R:56:36 6. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 7. └─private$.optimizer$optimize(inst) 8. └─bbotk:::.__OptimizerBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 16. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─irace::irace(scenario = scenario) 21. └─irace:::irace_common(scenario, simple = TRUE) 22. └─irace:::irace_run(scenario = scenario) 23. └─irace:::elitist_race(...) 24. └─irace:::race_wrapper(...) 25. └─irace:::race_wrapper_helper(...) 26. └─irace:::execute_experiments(...) 27. └─scenario$targetRunnerParallel(...) 28. └─tuning_instance$eval_batch(xdt) 29. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 30. └─self$objective$eval_many(xss_trafoed) 31. └─bbotk:::.__Objective__eval_many(...) 32. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 33. │ └─base::eval.parent(expr, n = 1L) 34. │ └─base::eval(expr, p) 35. │ └─base::eval(expr, p) 36. └─private$.eval_many(xss = xss, resampling = `<list>`) 37. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 38. └─mlr3::benchmark(...) 39. └─ResultData$new(grid, data_extra, store_backends = store_backends) 40. └─mlr3 (local) initialize(...) 41. └─mlr3:::.__ResultData__initialize(...) 42. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 43. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:70:36'): TunerIrace uses digits ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:70:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. ├─checkmate::expect_data_table(tuner$optimize(instance)) at test_TunerBatchIrace.R:70:36 6. │ └─checkmate::checkDataTable(...) 7. └─tuner$optimize(instance) 8. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 9. └─private$.optimizer$optimize(inst) 10. └─bbotk:::.__OptimizerBatch__optimize(...) 11. └─bbotk::optimize_batch_default(inst, self) 12. ├─base::tryCatch(...) 13. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 14. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 15. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 16. └─get_private(optimizer)$.optimize(instance) 17. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 18. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─irace::irace(scenario = scenario) 23. └─irace:::irace_common(scenario, simple = TRUE) 24. └─irace:::irace_run(scenario = scenario) 25. └─irace:::elitist_race(...) 26. └─irace:::race_wrapper(...) 27. └─irace:::race_wrapper_helper(...) 28. └─irace:::execute_experiments(...) 29. └─scenario$targetRunnerParallel(...) 30. └─tuning_instance$eval_batch(xdt) 31. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 32. └─self$objective$eval_many(xss_trafoed) 33. └─bbotk:::.__Objective__eval_many(...) 34. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 35. │ └─base::eval.parent(expr, n = 1L) 36. │ └─base::eval(expr, p) 37. │ └─base::eval(expr, p) 38. └─private$.eval_many(xss = xss, resampling = `<list>`) 39. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 40. └─mlr3::benchmark(...) 41. └─ResultData$new(grid, data_extra, store_backends = store_backends) 42. └─mlr3 (local) initialize(...) 43. └─mlr3:::.__ResultData__initialize(...) 44. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 45. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:84:36'): TunerIrace works with unnamed discrete values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:84:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. ├─checkmate::expect_data_table(tuner$optimize(instance)) at test_TunerBatchIrace.R:84:36 6. │ └─checkmate::checkDataTable(...) 7. └─tuner$optimize(instance) 8. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 9. └─private$.optimizer$optimize(inst) 10. └─bbotk:::.__OptimizerBatch__optimize(...) 11. └─bbotk::optimize_batch_default(inst, self) 12. ├─base::tryCatch(...) 13. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 14. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 15. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 16. └─get_private(optimizer)$.optimize(instance) 17. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 18. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─irace::irace(scenario = scenario) 23. └─irace:::irace_common(scenario, simple = TRUE) 24. └─irace:::irace_run(scenario = scenario) 25. └─irace:::elitist_race(...) 26. └─irace:::race_wrapper(...) 27. └─irace:::race_wrapper_helper(...) 28. └─irace:::execute_experiments(...) 29. └─scenario$targetRunnerParallel(...) 30. └─tuning_instance$eval_batch(xdt) 31. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 32. └─self$objective$eval_many(xss_trafoed) 33. └─bbotk:::.__Objective__eval_many(...) 34. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 35. │ └─base::eval.parent(expr, n = 1L) 36. │ └─base::eval(expr, p) 37. │ └─base::eval(expr, p) 38. └─private$.eval_many(xss = xss, resampling = `<list>`) 39. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 40. └─mlr3::benchmark(...) 41. └─ResultData$new(grid, data_extra, store_backends = store_backends) 42. └─mlr3 (local) initialize(...) 43. └─mlr3:::.__ResultData__initialize(...) 44. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 45. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchNLoptr.R:5:3'): TunerNLoptr ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("nloptr", algorithm = "NLOPT_LN_BOBYQA", term_evals = 4) at test_TunerBatchNLoptr.R:5:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchNLoptr__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─nloptr::nloptr(...) 18. └─bbotk (local) eval_f(x0, ...) 19. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 20. └─private$.objective_function(x, self, self$objective_multiplicator) 21. └─inst$eval_batch(xdt) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchRandomSearch.R:2:3'): TunerRandomSearch ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("random_search") at test_TunerBatchRandomSearch.R:2:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerInternal.R:18:3'): tuner internal works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerInternal.R:18:3 2. └─mlr3tuning:::.__TunerBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3tuning:::.__TunerBatchInternal__.optimize(...) 10. └─inst$eval_batch(data.table()) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(list(list())) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:19:3'): tuning with multiple objectives ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchMultiCrit.R:19:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:35:3'): store_benchmark_result and store_models flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchMultiCrit.R:35:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:64:3'): check_values flag with parameter set dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchMultiCrit.R:64:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:114:3'): TuneToken and result_learner_param_vals works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchMultiCrit.R:114:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:122:3'): TuningInstanceBatchMultiCrit and empty search space works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TuningInstanceBatchMultiCrit.R:122:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(list(list())) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:186:3'): Batch multi-crit internal tuning works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), min.rows = 1) at test_TuningInstanceBatchMultiCrit.R:186:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:9:3'): TuningInstanceBatchSingleCrit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchSingleCrit.R:9:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:46:3'): archive one row (#40) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(data.table(cp = 0.1)) at test_TuningInstanceBatchSingleCrit.R:46:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:55:3'): eval_batch and termination ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(design[1:2, ]) at test_TuningInstanceBatchSingleCrit.R:55:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:76:3'): the same experiment can be added twice ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(d) at test_TuningInstanceBatchSingleCrit.R:76:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:99:3'): tuning with custom resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:99:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:128:3'): non-scalar hyperpars (#201) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tnr("random_search")$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:128:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:136:3'): store_benchmark_result and store_models flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchSingleCrit.R:136:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:170:3'): check_values flag with parameter set dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:170:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:220:3'): TuneToken and result_learner_param_vals works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchSingleCrit.R:220:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:230:3'): TuningInstanceBatchSingleCrit and empty search space works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TuningInstanceBatchSingleCrit.R:230:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(list(list())) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:413:3'): objective contains no benchmark results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchSingleCrit.R:413:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(list(list())) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:422:3'): dependencies in defaults work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_class(...) at test_TuningInstanceBatchSingleCrit.R:422:3 2. │ └─checkmate::checkClass(x, classes, ordered, null.ok) 3. └─mlr3tuning::tune(...) 4. └─tuner$optimize(instance) 5. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 6. └─private$.optimizer$optimize(inst) 7. └─bbotk:::.__OptimizerBatch__optimize(...) 8. └─bbotk::optimize_batch_default(inst, self) 9. ├─base::tryCatch(...) 10. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 11. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 12. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 13. └─get_private(optimizer)$.optimize(instance) 14. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 15. └─inst$eval_batch(design$data) 16. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 17. └─self$objective$eval_many(xss_trafoed) 18. └─bbotk:::.__Objective__eval_many(...) 19. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 20. │ └─base::eval.parent(expr, n = 1L) 21. │ └─base::eval(expr, p) 22. │ └─base::eval(expr, p) 23. └─private$.eval_many(xss = xss, resampling = `<list>`) 24. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 25. └─mlr3::benchmark(...) 26. └─ResultData$new(grid, data_extra, store_backends = store_backends) 27. └─mlr3 (local) initialize(...) 28. └─mlr3:::.__ResultData__initialize(...) 29. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 30. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:459:3'): Batch single-crit internal tuning works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1) at test_TuningInstanceBatchSingleCrit.R:459:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Failure ('test_TuningInstanceBatchSingleCrit.R:478:3'): required parameter can be tuned internally without having a value set ── Expected `tune(...)` not to throw any errors. Actually got a <simpleError> with message: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_error(...) at test_TuningInstanceBatchSingleCrit.R:478:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. └─mlr3tuning::tune(...) 8. └─tuner$optimize(instance) 9. └─mlr3tuning:::.__TunerBatch__optimize(...) 10. └─bbotk::optimize_batch_default(inst, self) 11. ├─base::tryCatch(...) 12. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 13. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 14. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 15. └─get_private(optimizer)$.optimize(instance) 16. └─mlr3tuning:::.__TunerBatchInternal__.optimize(...) 17. └─inst$eval_batch(data.table()) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(list(list())) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_error_handling.R:12:3'): failing learner ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─mlr3tuning:::expect_resample_error(tt$optimize(instance), "classif.debug->train") at test_error_handling.R:12:3 2. │ ├─base::withCallingHandlers(...) at ./helper.R:26:3 3. │ └─testthat::expect_error(...) 4. │ └─testthat:::expect_condition_matching_(...) 5. │ └─testthat:::quasi_capture(...) 6. │ ├─testthat (local) .capture(...) 7. │ │ └─base::withCallingHandlers(...) 8. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 9. └─tt$optimize(instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test_error_handling.R:36:3'): predictions missing ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─mlr3tuning:::expect_resample_error(tt$optimize(instance), "missing") at test_error_handling.R:36:3 2. │ ├─base::withCallingHandlers(...) at ./helper.R:26:3 3. │ └─testthat::expect_error(...) 4. │ └─testthat:::expect_condition_matching_(...) 5. │ └─testthat:::quasi_capture(...) 6. │ ├─testthat (local) .capture(...) 7. │ │ └─base::withCallingHandlers(...) 8. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 9. └─tt$optimize(instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test_extract_inner_tuning_archives.R:11:3'): extract_inner_tuning_archives function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_archives.R:11:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_archives.R:131:3'): works with internal tuning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(...) at test_extract_inner_tuning_archives.R:131:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_results.R:11:3'): extract_inner_tuning_results function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_results.R:11:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_results.R:131:3'): extract_inner_tuning_results returns tuning_instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("penguins"), at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_results.R:131:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_mlr_callbacks.R:6:3'): backup callback works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:6:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:23:3'): backup callback works with standalone tuner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:23:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:282:3'): batch default configuration callback works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:282:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:299:3'): batch default configuration callback works with logscale ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:299:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:332:3'): batch default configuration callback works without transformation and with logscale ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:332:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:437:3'): one se rule callback works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:437:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_trafos.R:10:3'): simple exp trafo works ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_trafos.R:10:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_trafos.R:34:3'): trafo where param names change ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_trafos.R:34:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:3:3'): tune function works with one measure ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:3:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:13:3'): tune function works with multiple measures ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:13:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:23:3'): tune function works without measure ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:23:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune_nested.R:5:3'): tune_nested function works ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune_nested(...) at test_tune_nested.R:5:3 2. └─mlr3::resample(task, at, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) [ FAIL 113 | WARN 9 | SKIP 68 | PASS 191 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 1.5.1
Check: examples
Result: ERROR Running examples in ‘mlr3tuning-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: AutoTuner > ### Title: Class for Automatic Tuning > ### Aliases: AutoTuner > > ### ** Examples > > # Automatic Tuning > > # split to train and external set > task = tsk("penguins") > split = partition(task, ratio = 0.8) > > # load learner and set search space > learner = lrn("classif.rpart", + cp = to_tune(1e-04, 1e-1, logscale = TRUE) + ) > > # create auto tuner > at = auto_tuner( + tuner = tnr("random_search"), + learner = learner, + resampling = rsmp ("holdout"), + measure = msr("classif.ce"), + term_evals = 4) > > # tune hyperparameters and fit final model > at$train(task, row_ids = split$train) INFO [17:18:14.071] [bbotk] Starting to optimize 1 parameter(s) with '<OptimizerBatchRandomSearch>' and '<TerminatorEvals> [n_evals=4, k=0]' INFO [17:18:14.155] [bbotk] Evaluating 1 configuration(s) INFO [17:18:14.177] [mlr3] Running benchmark with 1 resampling iterations INFO [17:18:14.255] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 1/1) INFO [17:18:14.289] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.5.1
Check: tests
Result: ERROR Running ‘testthat.R’ [68s/94s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3tuning") + test_check("mlr3tuning") + } Loading required package: mlr3 Loading required package: paradox Saving _problems/test_ArchiveBatchTuning-11.R Saving _problems/test_ArchiveBatchTuning-126.R Saving _problems/test_ArchiveBatchTuning-277.R Saving _problems/test_AutoTuner-10.R Saving _problems/test_AutoTuner-42.R Saving _problems/test_AutoTuner-77.R Saving _problems/test_AutoTuner-93.R Saving _problems/test_AutoTuner-118.R Saving _problems/test_AutoTuner-155.R Saving _problems/test_AutoTuner-184.R Saving _problems/test_AutoTuner-246.R Saving _problems/test_AutoTuner-282.R Saving _problems/test_AutoTuner-308.R Saving _problems/test_AutoTuner-373.R Saving _problems/test_AutoTuner-389.R Saving _problems/test_AutoTuner-420.R Saving _problems/test_AutoTuner-434.R Saving _problems/test_AutoTuner-480.R Saving _problems/test_AutoTuner-606.R Saving _problems/test_AutoTuner-625.R Saving _problems/test_AutoTuner-676.R Saving _problems/test_AutoTuner-699.R Saving _problems/test_CallbackBatchTuning-17.R Saving _problems/test_CallbackBatchTuning-37.R Saving _problems/test_CallbackBatchTuning-59.R Saving _problems/test_CallbackBatchTuning-80.R Saving _problems/test_CallbackBatchTuning-103.R Saving _problems/test_CallbackBatchTuning-127.R Saving _problems/test_CallbackBatchTuning-150.R Saving _problems/test_CallbackBatchTuning-171.R Saving _problems/test_CallbackBatchTuning-191.R Saving _problems/test_CallbackBatchTuning-214.R Saving _problems/test_CallbackBatchTuning-235.R Saving _problems/test_CallbackBatchTuning-255.R Saving _problems/test_CallbackBatchTuning-284.R Saving _problems/test_CallbackBatchTuning-312.R Saving _problems/test_CallbackBatchTuning-339.R Saving _problems/test_CallbackBatchTuning-367.R Saving _problems/test_ObjectiveTuningAsync-12.R Saving _problems/test_ObjectiveTuningAsync-32.R Saving _problems/test_ObjectiveTuningAsync-54.R Saving _problems/test_ObjectiveTuningAsync-76.R Saving _problems/test_ObjectiveTuningBatch-14.R Saving _problems/test_ObjectiveTuningBatch-37.R Saving _problems/test_ObjectiveTuningBatch-52.R Saving _problems/test_ObjectiveTuningBatch-69.R Saving _problems/test_ObjectiveTuningBatch-105.R Saving _problems/test_ObjectiveTuningBatch-128.R Saving _problems/test_ObjectiveTuningBatch-149.R Saving _problems/test_Tuner-5.R Saving _problems/test_Tuner-46.R Saving _problems/test_Tuner-90.R Saving _problems/test_Tuner-121.R Saving _problems/test_Tuner-188.R Saving _problems/test_Tuner-212.R Saving _problems/test_Tuner-242.R Saving _problems/test_Tuner-294.R Saving _problems/test_Tuner-336.R Saving _problems/test_Tuner-355.R Saving _problems/test_TunerBatchCmaes-19.R Saving _problems/test_TunerBatchDesignPoints-3.R Saving _problems/test_TunerBatchFromOptimizerBatch-13.R Saving _problems/test_TunerBatchGenSA-4.R Saving _problems/test_TunerBatchGenSA-23.R Saving _problems/test_TunerBatchGenSA-31.R Saving _problems/test_TunerBatchGridSearch-2.R Saving _problems/test_TunerBatchGridSearch-22.R # 2025-12-20 17:19:04 CET: Initialization # Elitist race # Elitist new instances: 1 # Elitist limit: 2 # nbIterations: 2 # minNbSurvival: 2 # nbParameters: 1 # seed: 81639095 # confidence level: 0.95 # budget: 42 # mu: 5 # deterministic: FALSE # 2025-12-20 17:19:04 CET: Iteration 1 of 2 # experimentsUsed: 0 # remainingBudget: 42 # currentBudget: 21 # nbConfigurations: 3 # Markers: x No test is performed. c Configurations are discarded only due to capping. - The test is performed and some configurations are discarded. = The test is performed but no configuration is discarded. ! The test is performed and configurations could be discarded but elite configurations are preserved. . All alive configurations are elite and nothing is discarded. +-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+ | | Instance| Alive| Best| Mean best| Exp so far| W time| rho|KenW| Qvar| +-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+ Saving _problems/test_TunerBatchIrace-4.R Saving _problems/test_TunerBatchNLoptr-5.R Saving _problems/test_TunerBatchRandomSearch-2.R Saving _problems/test_TunerInternal-18.R Saving _problems/test_TuningInstanceBatchMultiCrit-19.R Saving _problems/test_TuningInstanceBatchMultiCrit-35.R Saving _problems/test_TuningInstanceBatchMultiCrit-64.R Saving _problems/test_TuningInstanceBatchMultiCrit-114.R Saving _problems/test_TuningInstanceBatchMultiCrit-129.R Saving _problems/test_TuningInstanceBatchMultiCrit-186.R Saving _problems/test_TuningInstanceBatchSingleCrit-9.R Saving _problems/test_TuningInstanceBatchSingleCrit-46.R Saving _problems/test_TuningInstanceBatchSingleCrit-55.R Saving _problems/test_TuningInstanceBatchSingleCrit-76.R Saving _problems/test_TuningInstanceBatchSingleCrit-99.R Saving _problems/test_TuningInstanceBatchSingleCrit-128.R Saving _problems/test_TuningInstanceBatchSingleCrit-136.R Saving _problems/test_TuningInstanceBatchSingleCrit-170.R Saving _problems/test_TuningInstanceBatchSingleCrit-220.R Saving _problems/test_TuningInstanceBatchSingleCrit-237.R Saving _problems/test_TuningInstanceBatchSingleCrit-413.R Saving _problems/test_TuningInstanceBatchSingleCrit-428.R Saving _problems/test_TuningInstanceBatchSingleCrit-459.R Saving _problems/test_TuningInstanceBatchSingleCrit-484.R Saving _problems/test_error_handling-18.R Saving _problems/test_error_handling-36.R Saving _problems/test_extract_inner_tuning_archives-11.R Saving _problems/test_extract_inner_tuning_archives-131.R Saving _problems/test_extract_inner_tuning_results-11.R Saving _problems/test_extract_inner_tuning_results-131.R Saving _problems/test_mlr_callbacks-14.R Saving _problems/test_mlr_callbacks-31.R Saving _problems/test_mlr_callbacks-290.R Saving _problems/test_mlr_callbacks-307.R Saving _problems/test_mlr_callbacks-340.R Saving _problems/test_mlr_callbacks-445.R Saving _problems/test_trafos-10.R Saving _problems/test_trafos-34.R Saving _problems/test_tune-4.R Saving _problems/test_tune-14.R Saving _problems/test_tune-24.R Saving _problems/test_tune_nested-6.R [ FAIL 113 | WARN 9 | SKIP 68 | PASS 192 ] ══ Skipped tests (68) ══════════════════════════════════════════════════════════ • On CRAN (68): 'test_ArchiveAsyncTuning.R:2:3', 'test_ArchiveAsyncTuning.R:61:3', 'test_ArchiveAsyncTuning.R:119:3', 'test_ArchiveAsyncTuning.R:146:3', 'test_ArchiveAsyncTuning.R:169:3', 'test_ArchiveAsyncTuning.R:209:3', 'test_ArchiveAsyncTuning.R:251:3', 'test_ArchiveAsyncTuning.R:284:3', 'test_ArchiveAsyncTuningFrozen.R:2:3', 'test_AutoTuner.R:640:3', 'test_CallbackAsyncTuning.R:4:3', 'test_CallbackAsyncTuning.R:33:3', 'test_CallbackAsyncTuning.R:64:3', 'test_CallbackAsyncTuning.R:93:3', 'test_CallbackAsyncTuning.R:124:3', 'test_CallbackAsyncTuning.R:160:3', 'test_CallbackAsyncTuning.R:188:3', 'test_CallbackAsyncTuning.R:222:3', 'test_CallbackAsyncTuning.R:252:3', 'test_CallbackAsyncTuning.R:281:3', 'test_CallbackAsyncTuning.R:312:3', 'test_CallbackAsyncTuning.R:343:3', 'test_CallbackAsyncTuning.R:373:3', 'test_CallbackAsyncTuning.R:405:3', 'test_CallbackAsyncTuning.R:443:3', 'test_CallbackAsyncTuning.R:480:3', 'test_CallbackAsyncTuning.R:516:3', 'test_Tuner.R:53:1', 'test_TunerAsyncDesignPoints.R:2:3', 'test_TunerAsyncGridSearch.R:2:3', 'test_TunerAsyncRandomSearch.R:2:3', 'test_TuningInstanceAsyncMultiCrit.R:2:3', 'test_TuningInstanceAsyncMultiCrit.R:30:3', 'test_TuningInstanceAsyncMultiCrit.R:57:3', 'test_TuningInstanceAsyncMultiCrit.R:81:3', 'test_TuningInstanceAsyncMultiCrit.R:106:3', 'test_TuningInstanceAsyncMultiCrit.R:134:3', 'test_TuningInstanceAsyncMultiCrit.R:189:3', 'test_TuningInstanceAsyncMultiCrit.R:236:3', 'test_TuningInstanceAsyncMultiCrit.R:261:3', 'test_TuningInstanceAsyncSingleCrit.R:2:3', 'test_TuningInstanceAsyncSingleCrit.R:29:3', 'test_TuningInstanceAsyncSingleCrit.R:54:3', 'test_TuningInstanceAsyncSingleCrit.R:78:3', 'test_TuningInstanceAsyncSingleCrit.R:104:3', 'test_TuningInstanceAsyncSingleCrit.R:131:3', 'test_TuningInstanceAsyncSingleCrit.R:182:3', 'test_TuningInstanceAsyncSingleCrit.R:213:3', 'test_TuningInstanceAsyncSingleCrit.R:226:3', 'test_TuningInstanceAsyncSingleCrit.R:240:3', 'test_TuningInstanceAsyncSingleCrit.R:266:3', 'test_auto_tuner.R:25:3', 'test_auto_tuner.R:48:3', 'test_mlr_callbacks.R:40:3', 'test_mlr_callbacks.R:93:3', 'test_mlr_callbacks.R:117:3', 'test_mlr_callbacks.R:141:3', 'test_mlr_callbacks.R:162:3', 'test_mlr_callbacks.R:192:3', 'test_mlr_callbacks.R:218:3', 'test_mlr_callbacks.R:251:3', 'test_mlr_callbacks.R:410:3', 'test_mlr_callbacks.R:452:3', 'test_mlr_callbacks.R:480:3', 'test_ti_async.R:2:3', 'test_ti_async.R:16:3', 'test_ti_async.R:30:3', 'test_ti_async.R:42:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ArchiveBatchTuning.R:11:3'): ArchiveTuning access methods work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:11:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchTuning.R:126:3'): ArchiveTuning as.data.table function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:126:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchTuning.R:277:3'): ArchiveBatchTuning as.data.table function works for internally tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:277:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:10:3'): AutoTuner / train+predict ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:10:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:42:3'): AutoTuner / resample ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, r_outer, store_models = TRUE) at test_AutoTuner.R:42:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:77:3'): nested resamppling results are consistent ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), lrn, cv2, store_models = TRUE) at test_AutoTuner.R:77:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:93:3'): AT training does not change learner in instance args ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:93:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:118:3'): AutoTuner works with graphlearner ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:118:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:155:3'): Nested resampling works with graphlearner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_AutoTuner.R:155:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:184:3'): store_tuning_instance, store_benchmark_result and store_models flags work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:184:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:246:3'): predict_type works ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:246:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:282:3'): search space from TuneToken works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("iris")) at test_AutoTuner.R:282:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:308:3'): AutoTuner get_base_learner method works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("pima")) at test_AutoTuner.R:308:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:373:3'): AutoTuner hash works #647 in mlr3 ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_AutoTuner.R:373:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:389:3'): AutoTuner works with empty search space ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("pima")) at test_AutoTuner.R:389:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:420:3'): AutoTuner importance method works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("penguins")) at test_AutoTuner.R:420:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:434:3'): AutoTuner selected_features method works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("penguins")) at test_AutoTuner.R:434:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:480:3'): AutoTuner works with instantiated resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:480:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:606:3'): marshalable learner ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:606:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:625:3'): marshal ─────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:625:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:676:3'): AutoTuner works with internal tuning and validation ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:676:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:699:3'): AutoTuner works when internal_search_space is part of primary search space ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:699:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:10:3'): on_optimization_begin works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:10:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:30:3'): on_optimization_end works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:30:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:52:3'): on_optimizer_after_eval works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:52:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:73:3'): on_optimizer_after_eval works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:73:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:96:3'): on_eval_after_design works ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:96:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:120:3'): on_eval_after_benchmark and on_eval_before_archive works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:120:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:143:3'): on_tuning_result_begin in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:143:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:164:3'): on_result_end in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:164:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:184:3'): on_result in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:184:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:207:3'): on_tuning_result_begin in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:207:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:228:3'): on_result_end in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:228:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:248:3'): on_result in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:248:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:277:3'): on_resample_begin works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:277:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:305:3'): on_resample_before_train works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:305:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:332:3'): on_resample_before_predict works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:332:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:360:3'): on_resample_end works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:360:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:12:3'): objective async works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:12:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:32:3'): store benchmark result works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:32:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:54:3'): store models works ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:54:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:76:3'): rush objective with multiple measures works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:76:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:14:3'): ObjectiveTuningBatch ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:14:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:37:3'): ObjectiveTuningBatch - Multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:37:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:52:3'): ObjectiveTuningBatch - Store models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:52:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:69:3'): runtime of learners is added ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:69:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:105:3'): tuner can modify resampling ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─instance$eval_batch(data.table(cp = 0.001)) at test_ObjectiveTuningBatch.R:105:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:128:3'): benchmark clone works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, clone = c()) at test_ObjectiveTuningBatch.R:128:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:149:3'): objects are cloned ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:149:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:5:5'): API ───────────────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(rs$optimize(inst), nrows = 1) at test_Tuner.R:5:5 2. │ └─checkmate::checkDataTable(...) 3. └─rs$optimize(inst) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:46:3'): we get a result when some subordinate params are not fulfilled ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(d) at test_Tuner.R:46:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:90:3'): Tuner works with graphlearner ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_Tuner.R:90:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:121:3'): Tuner works with instantiated resampling ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─rs$optimize(inst) at test_Tuner.R:121:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:182:3'): internal single crit ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:182:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:205:3'): internal single crit without benchmark_result ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:205:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:235:3'): internal multi crit ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:235:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:294:3'): internal tuning: branching ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_Tuner.R:294:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:325:3'): parameter transformations can be used with internal tuning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:325:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:348:3'): tag internal tune token manually in primary search space ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:348:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchCmaes.R:12:3'): TunerBatchCmaes ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchCmaes.R:12:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchCmaes__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─adagio::pureCMAES(...) 18. └─adagio (local) fun(arx[, k]) 19. └─bbotk (local) fct(x, ...) 20. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 21. └─private$.objective_function(x, self, self$objective_multiplicator) 22. └─inst$eval_batch(xdt) 23. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 24. └─self$objective$eval_many(xss_trafoed) 25. └─bbotk:::.__Objective__eval_many(...) 26. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 27. │ └─base::eval.parent(expr, n = 1L) 28. │ └─base::eval(expr, p) 29. │ └─base::eval(expr, p) 30. └─private$.eval_many(xss = xss, resampling = `<list>`) 31. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 32. └─mlr3::benchmark(...) 33. └─ResultData$new(grid, data_extra, store_backends = store_backends) 34. └─mlr3 (local) initialize(...) 35. └─mlr3:::.__ResultData__initialize(...) 36. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 37. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchDesignPoints.R:3:3'): TunerBatchDesignPoints ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner(...) at test_TunerBatchDesignPoints.R:3:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchFromOptimizerBatch.R:13:3'): TunerBatchFromOptimizerBatch parameter set works after cloning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner_2$optimize(instance) at test_TunerBatchFromOptimizerBatch.R:13:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:4:3'): TunerBatchGenSA ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global test_tuner("gensa") at test_TunerBatchGenSA.R:4:3 2. │ └─tuner$optimize(inst) 3. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. │ └─private$.optimizer$optimize(inst) 5. │ └─bbotk:::.__OptimizerBatch__optimize(...) 6. │ └─bbotk::optimize_batch_default(inst, self) 7. │ ├─base::tryCatch(...) 8. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. │ └─get_private(optimizer)$.optimize(instance) 12. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 13. │ └─GenSA::GenSA(...) 14. └─GenSA (local) `<fn>`(`<dbl>`) 15. └─bbotk (local) fn(par, ...) 16. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 17. └─private$.objective_function(x, self, self$objective_multiplicator) 18. └─inst$eval_batch(xdt) 19. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 20. └─self$objective$eval_many(xss_trafoed) 21. └─bbotk:::.__Objective__eval_many(...) 22. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 23. │ └─base::eval.parent(expr, n = 1L) 24. │ └─base::eval(expr, p) 25. │ └─base::eval(expr, p) 26. └─private$.eval_many(xss = xss, resampling = `<list>`) 27. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 28. └─mlr3::benchmark(...) 29. └─ResultData$new(grid, data_extra, store_backends = store_backends) 30. └─mlr3 (local) initialize(...) 31. └─mlr3:::.__ResultData__initialize(...) 32. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 33. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:23:3'): TunerBatchGenSA with int params and trafo ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─tt$optimize(inst) at test_TunerBatchGenSA.R:23:3 2. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. │ └─private$.optimizer$optimize(inst) 4. │ └─bbotk:::.__OptimizerBatch__optimize(...) 5. │ └─bbotk::optimize_batch_default(inst, self) 6. │ ├─base::tryCatch(...) 7. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. │ └─get_private(optimizer)$.optimize(instance) 11. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 12. │ └─GenSA::GenSA(...) 13. └─GenSA (local) `<fn>`(`<dbl>`) 14. └─bbotk (local) fn(par, ...) 15. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 16. └─private$.objective_function(x, self, self$objective_multiplicator) 17. └─inst$eval_batch(xdt) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:31:3'): TunerBatchGenSA - Optimize wrapper with maximize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─tt$optimize(inst) at test_TunerBatchGenSA.R:31:3 2. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. │ └─private$.optimizer$optimize(inst) 4. │ └─bbotk:::.__OptimizerBatch__optimize(...) 5. │ └─bbotk::optimize_batch_default(inst, self) 6. │ ├─base::tryCatch(...) 7. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. │ └─get_private(optimizer)$.optimize(instance) 11. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 12. │ └─GenSA::GenSA(...) 13. └─GenSA (local) `<fn>`(`<dbl>`) 14. └─bbotk (local) fn(par, ...) 15. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 16. └─private$.objective_function(x, self, self$objective_multiplicator) 17. └─inst$eval_batch(xdt) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGridSearch.R:2:3'): TunerGridSearch ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner(...) at test_TunerBatchGridSearch.R:2:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGridSearch.R:22:3'): TunerGridSearch with TerminatorNone ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TunerBatchGridSearch.R:22:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:4:3'): TunerIrace ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("irace", term_evals = 42) at test_TunerBatchIrace.R:4:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 13. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─irace::irace(scenario = scenario) 18. └─irace:::irace_common(scenario, simple = TRUE) 19. └─irace:::irace_run(scenario = scenario) 20. └─irace:::elitist_race(...) 21. └─irace:::race_wrapper(...) 22. └─irace:::race_wrapper_helper(...) 23. └─irace:::execute_experiments(...) 24. └─scenario$targetRunnerParallel(...) 25. └─tuning_instance$eval_batch(xdt) 26. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 27. └─self$objective$eval_many(xss_trafoed) 28. └─bbotk:::.__Objective__eval_many(...) 29. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 30. │ └─base::eval.parent(expr, n = 1L) 31. │ └─base::eval(expr, p) 32. │ └─base::eval(expr, p) 33. └─private$.eval_many(xss = xss, resampling = `<list>`) 34. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 35. └─mlr3::benchmark(...) 36. └─ResultData$new(grid, data_extra, store_backends = store_backends) 37. └─mlr3 (local) initialize(...) 38. └─mlr3:::.__ResultData__initialize(...) 39. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 40. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:37:36'): TunerIrace works with dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:37:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. └─tuner$optimize(instance) at test_TunerBatchIrace.R:37:36 6. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 7. └─private$.optimizer$optimize(inst) 8. └─bbotk:::.__OptimizerBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 16. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─irace::irace(scenario = scenario) 21. └─irace:::irace_common(scenario, simple = TRUE) 22. └─irace:::irace_run(scenario = scenario) 23. └─irace:::elitist_race(...) 24. └─irace:::race_wrapper(...) 25. └─irace:::race_wrapper_helper(...) 26. └─irace:::execute_experiments(...) 27. └─scenario$targetRunnerParallel(...) 28. └─tuning_instance$eval_batch(xdt) 29. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 30. └─self$objective$eval_many(xss_trafoed) 31. └─bbotk:::.__Objective__eval_many(...) 32. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 33. │ └─base::eval.parent(expr, n = 1L) 34. │ └─base::eval(expr, p) 35. │ └─base::eval(expr, p) 36. └─private$.eval_many(xss = xss, resampling = `<list>`) 37. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 38. └─mlr3::benchmark(...) 39. └─ResultData$new(grid, data_extra, store_backends = store_backends) 40. └─mlr3 (local) initialize(...) 41. └─mlr3:::.__ResultData__initialize(...) 42. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 43. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:56:36'): TunerIrace works with logical parameters ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:56:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. └─tuner$optimize(instance) at test_TunerBatchIrace.R:56:36 6. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 7. └─private$.optimizer$optimize(inst) 8. └─bbotk:::.__OptimizerBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 16. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─irace::irace(scenario = scenario) 21. └─irace:::irace_common(scenario, simple = TRUE) 22. └─irace:::irace_run(scenario = scenario) 23. └─irace:::elitist_race(...) 24. └─irace:::race_wrapper(...) 25. └─irace:::race_wrapper_helper(...) 26. └─irace:::execute_experiments(...) 27. └─scenario$targetRunnerParallel(...) 28. └─tuning_instance$eval_batch(xdt) 29. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 30. └─self$objective$eval_many(xss_trafoed) 31. └─bbotk:::.__Objective__eval_many(...) 32. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 33. │ └─base::eval.parent(expr, n = 1L) 34. │ └─base::eval(expr, p) 35. │ └─base::eval(expr, p) 36. └─private$.eval_many(xss = xss, resampling = `<list>`) 37. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 38. └─mlr3::benchmark(...) 39. └─ResultData$new(grid, data_extra, store_backends = store_backends) 40. └─mlr3 (local) initialize(...) 41. └─mlr3:::.__ResultData__initialize(...) 42. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 43. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:70:36'): TunerIrace uses digits ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:70:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. ├─checkmate::expect_data_table(tuner$optimize(instance)) at test_TunerBatchIrace.R:70:36 6. │ └─checkmate::checkDataTable(...) 7. └─tuner$optimize(instance) 8. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 9. └─private$.optimizer$optimize(inst) 10. └─bbotk:::.__OptimizerBatch__optimize(...) 11. └─bbotk::optimize_batch_default(inst, self) 12. ├─base::tryCatch(...) 13. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 14. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 15. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 16. └─get_private(optimizer)$.optimize(instance) 17. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 18. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─irace::irace(scenario = scenario) 23. └─irace:::irace_common(scenario, simple = TRUE) 24. └─irace:::irace_run(scenario = scenario) 25. └─irace:::elitist_race(...) 26. └─irace:::race_wrapper(...) 27. └─irace:::race_wrapper_helper(...) 28. └─irace:::execute_experiments(...) 29. └─scenario$targetRunnerParallel(...) 30. └─tuning_instance$eval_batch(xdt) 31. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 32. └─self$objective$eval_many(xss_trafoed) 33. └─bbotk:::.__Objective__eval_many(...) 34. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 35. │ └─base::eval.parent(expr, n = 1L) 36. │ └─base::eval(expr, p) 37. │ └─base::eval(expr, p) 38. └─private$.eval_many(xss = xss, resampling = `<list>`) 39. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 40. └─mlr3::benchmark(...) 41. └─ResultData$new(grid, data_extra, store_backends = store_backends) 42. └─mlr3 (local) initialize(...) 43. └─mlr3:::.__ResultData__initialize(...) 44. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 45. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:84:36'): TunerIrace works with unnamed discrete values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:84:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. ├─checkmate::expect_data_table(tuner$optimize(instance)) at test_TunerBatchIrace.R:84:36 6. │ └─checkmate::checkDataTable(...) 7. └─tuner$optimize(instance) 8. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 9. └─private$.optimizer$optimize(inst) 10. └─bbotk:::.__OptimizerBatch__optimize(...) 11. └─bbotk::optimize_batch_default(inst, self) 12. ├─base::tryCatch(...) 13. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 14. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 15. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 16. └─get_private(optimizer)$.optimize(instance) 17. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 18. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─irace::irace(scenario = scenario) 23. └─irace:::irace_common(scenario, simple = TRUE) 24. └─irace:::irace_run(scenario = scenario) 25. └─irace:::elitist_race(...) 26. └─irace:::race_wrapper(...) 27. └─irace:::race_wrapper_helper(...) 28. └─irace:::execute_experiments(...) 29. └─scenario$targetRunnerParallel(...) 30. └─tuning_instance$eval_batch(xdt) 31. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 32. └─self$objective$eval_many(xss_trafoed) 33. └─bbotk:::.__Objective__eval_many(...) 34. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 35. │ └─base::eval.parent(expr, n = 1L) 36. │ └─base::eval(expr, p) 37. │ └─base::eval(expr, p) 38. └─private$.eval_many(xss = xss, resampling = `<list>`) 39. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 40. └─mlr3::benchmark(...) 41. └─ResultData$new(grid, data_extra, store_backends = store_backends) 42. └─mlr3 (local) initialize(...) 43. └─mlr3:::.__ResultData__initialize(...) 44. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 45. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchNLoptr.R:5:3'): TunerNLoptr ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("nloptr", algorithm = "NLOPT_LN_BOBYQA", term_evals = 4) at test_TunerBatchNLoptr.R:5:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchNLoptr__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─nloptr::nloptr(...) 18. └─bbotk (local) eval_f(x0, ...) 19. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 20. └─private$.objective_function(x, self, self$objective_multiplicator) 21. └─inst$eval_batch(xdt) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchRandomSearch.R:2:3'): TunerRandomSearch ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("random_search") at test_TunerBatchRandomSearch.R:2:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerInternal.R:18:3'): tuner internal works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerInternal.R:18:3 2. └─mlr3tuning:::.__TunerBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3tuning:::.__TunerBatchInternal__.optimize(...) 10. └─inst$eval_batch(data.table()) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(list(list())) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:19:3'): tuning with multiple objectives ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchMultiCrit.R:19:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:35:3'): store_benchmark_result and store_models flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchMultiCrit.R:35:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:64:3'): check_values flag with parameter set dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchMultiCrit.R:64:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:114:3'): TuneToken and result_learner_param_vals works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchMultiCrit.R:114:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:122:3'): TuningInstanceBatchMultiCrit and empty search space works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TuningInstanceBatchMultiCrit.R:122:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(list(list())) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:186:3'): Batch multi-crit internal tuning works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), min.rows = 1) at test_TuningInstanceBatchMultiCrit.R:186:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:9:3'): TuningInstanceBatchSingleCrit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchSingleCrit.R:9:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:46:3'): archive one row (#40) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(data.table(cp = 0.1)) at test_TuningInstanceBatchSingleCrit.R:46:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:55:3'): eval_batch and termination ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(design[1:2, ]) at test_TuningInstanceBatchSingleCrit.R:55:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:76:3'): the same experiment can be added twice ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(d) at test_TuningInstanceBatchSingleCrit.R:76:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:99:3'): tuning with custom resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:99:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:128:3'): non-scalar hyperpars (#201) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tnr("random_search")$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:128:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:136:3'): store_benchmark_result and store_models flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchSingleCrit.R:136:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:170:3'): check_values flag with parameter set dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:170:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:220:3'): TuneToken and result_learner_param_vals works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchSingleCrit.R:220:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:230:3'): TuningInstanceBatchSingleCrit and empty search space works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TuningInstanceBatchSingleCrit.R:230:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(list(list())) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:413:3'): objective contains no benchmark results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchSingleCrit.R:413:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(list(list())) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:422:3'): dependencies in defaults work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_class(...) at test_TuningInstanceBatchSingleCrit.R:422:3 2. │ └─checkmate::checkClass(x, classes, ordered, null.ok) 3. └─mlr3tuning::tune(...) 4. └─tuner$optimize(instance) 5. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 6. └─private$.optimizer$optimize(inst) 7. └─bbotk:::.__OptimizerBatch__optimize(...) 8. └─bbotk::optimize_batch_default(inst, self) 9. ├─base::tryCatch(...) 10. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 11. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 12. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 13. └─get_private(optimizer)$.optimize(instance) 14. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 15. └─inst$eval_batch(design$data) 16. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 17. └─self$objective$eval_many(xss_trafoed) 18. └─bbotk:::.__Objective__eval_many(...) 19. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 20. │ └─base::eval.parent(expr, n = 1L) 21. │ └─base::eval(expr, p) 22. │ └─base::eval(expr, p) 23. └─private$.eval_many(xss = xss, resampling = `<list>`) 24. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 25. └─mlr3::benchmark(...) 26. └─ResultData$new(grid, data_extra, store_backends = store_backends) 27. └─mlr3 (local) initialize(...) 28. └─mlr3:::.__ResultData__initialize(...) 29. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 30. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:459:3'): Batch single-crit internal tuning works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1) at test_TuningInstanceBatchSingleCrit.R:459:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Failure ('test_TuningInstanceBatchSingleCrit.R:478:3'): required parameter can be tuned internally without having a value set ── Expected `tune(...)` not to throw any errors. Actually got a <simpleError> with message: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_error(...) at test_TuningInstanceBatchSingleCrit.R:478:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. └─mlr3tuning::tune(...) 8. └─tuner$optimize(instance) 9. └─mlr3tuning:::.__TunerBatch__optimize(...) 10. └─bbotk::optimize_batch_default(inst, self) 11. ├─base::tryCatch(...) 12. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 13. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 14. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 15. └─get_private(optimizer)$.optimize(instance) 16. └─mlr3tuning:::.__TunerBatchInternal__.optimize(...) 17. └─inst$eval_batch(data.table()) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(list(list())) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_error_handling.R:18:3'): failing learner ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tt$optimize(instance) at test_error_handling.R:18:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_error_handling.R:36:3'): predictions missing ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─mlr3tuning:::expect_resample_error(tt$optimize(instance), "missing") at test_error_handling.R:36:3 2. │ ├─base::withCallingHandlers(...) at ./helper.R:26:3 3. │ └─testthat::expect_error(...) 4. │ └─testthat:::expect_condition_matching_(...) 5. │ └─testthat:::quasi_capture(...) 6. │ ├─testthat (local) .capture(...) 7. │ │ └─base::withCallingHandlers(...) 8. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 9. └─tt$optimize(instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test_extract_inner_tuning_archives.R:11:3'): extract_inner_tuning_archives function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_archives.R:11:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_archives.R:131:3'): works with internal tuning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(...) at test_extract_inner_tuning_archives.R:131:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_results.R:11:3'): extract_inner_tuning_results function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_results.R:11:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_results.R:131:3'): extract_inner_tuning_results returns tuning_instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("penguins"), at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_results.R:131:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_mlr_callbacks.R:6:3'): backup callback works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:6:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:23:3'): backup callback works with standalone tuner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:23:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:282:3'): batch default configuration callback works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:282:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:299:3'): batch default configuration callback works with logscale ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:299:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:332:3'): batch default configuration callback works without transformation and with logscale ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:332:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:437:3'): one se rule callback works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:437:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_trafos.R:10:3'): simple exp trafo works ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_trafos.R:10:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_trafos.R:34:3'): trafo where param names change ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_trafos.R:34:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:3:3'): tune function works with one measure ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:3:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:13:3'): tune function works with multiple measures ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:13:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:23:3'): tune function works without measure ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:23:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune_nested.R:5:3'): tune_nested function works ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune_nested(...) at test_tune_nested.R:5:3 2. └─mlr3::resample(task, at, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) [ FAIL 113 | WARN 9 | SKIP 68 | PASS 192 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 1.5.1
Check: examples
Result: ERROR Running examples in ‘mlr3tuning-Ex.R’ failed The error most likely occurred in: > ### Name: AutoTuner > ### Title: Class for Automatic Tuning > ### Aliases: AutoTuner > > ### ** Examples > > # Automatic Tuning > > # split to train and external set > task = tsk("penguins") > split = partition(task, ratio = 0.8) > > # load learner and set search space > learner = lrn("classif.rpart", + cp = to_tune(1e-04, 1e-1, logscale = TRUE) + ) > > # create auto tuner > at = auto_tuner( + tuner = tnr("random_search"), + learner = learner, + resampling = rsmp ("holdout"), + measure = msr("classif.ce"), + term_evals = 4) > > # tune hyperparameters and fit final model > at$train(task, row_ids = split$train) INFO [17:52:25.703] [bbotk] Starting to optimize 1 parameter(s) with '<OptimizerBatchRandomSearch>' and '<TerminatorEvals> [n_evals=4, k=0]' INFO [17:52:26.076] [bbotk] Evaluating 1 configuration(s) INFO [17:52:26.196] [mlr3] Running benchmark with 1 resampling iterations INFO [17:52:26.729] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 1/1) INFO [17:52:27.021] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.5.1
Check: tests
Result: ERROR Running ‘testthat.R’ [161s/301s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3tuning") + test_check("mlr3tuning") + } Loading required package: mlr3 Loading required package: paradox Saving _problems/test_ArchiveBatchTuning-11.R Saving _problems/test_ArchiveBatchTuning-126.R Saving _problems/test_ArchiveBatchTuning-277.R Saving _problems/test_AutoTuner-10.R Saving _problems/test_AutoTuner-42.R Saving _problems/test_AutoTuner-77.R Saving _problems/test_AutoTuner-93.R Saving _problems/test_AutoTuner-118.R Saving _problems/test_AutoTuner-155.R Saving _problems/test_AutoTuner-184.R Saving _problems/test_AutoTuner-246.R Saving _problems/test_AutoTuner-282.R Saving _problems/test_AutoTuner-308.R Saving _problems/test_AutoTuner-373.R Saving _problems/test_AutoTuner-389.R Saving _problems/test_AutoTuner-420.R Saving _problems/test_AutoTuner-434.R Saving _problems/test_AutoTuner-480.R Saving _problems/test_AutoTuner-606.R Saving _problems/test_AutoTuner-625.R Saving _problems/test_AutoTuner-676.R Saving _problems/test_AutoTuner-699.R Saving _problems/test_CallbackBatchTuning-17.R Saving _problems/test_CallbackBatchTuning-37.R Saving _problems/test_CallbackBatchTuning-59.R Saving _problems/test_CallbackBatchTuning-80.R Saving _problems/test_CallbackBatchTuning-103.R Saving _problems/test_CallbackBatchTuning-127.R Saving _problems/test_CallbackBatchTuning-150.R Saving _problems/test_CallbackBatchTuning-171.R Saving _problems/test_CallbackBatchTuning-191.R Saving _problems/test_CallbackBatchTuning-214.R Saving _problems/test_CallbackBatchTuning-235.R Saving _problems/test_CallbackBatchTuning-255.R Saving _problems/test_CallbackBatchTuning-284.R Saving _problems/test_CallbackBatchTuning-312.R Saving _problems/test_CallbackBatchTuning-339.R Saving _problems/test_CallbackBatchTuning-367.R Saving _problems/test_ObjectiveTuningAsync-12.R Saving _problems/test_ObjectiveTuningAsync-32.R Saving _problems/test_ObjectiveTuningAsync-54.R Saving _problems/test_ObjectiveTuningAsync-76.R Saving _problems/test_ObjectiveTuningBatch-14.R Saving _problems/test_ObjectiveTuningBatch-37.R Saving _problems/test_ObjectiveTuningBatch-52.R Saving _problems/test_ObjectiveTuningBatch-69.R Saving _problems/test_ObjectiveTuningBatch-105.R Saving _problems/test_ObjectiveTuningBatch-128.R Saving _problems/test_ObjectiveTuningBatch-149.R Saving _problems/test_Tuner-5.R Saving _problems/test_Tuner-46.R Saving _problems/test_Tuner-90.R Saving _problems/test_Tuner-121.R Saving _problems/test_Tuner-188.R Saving _problems/test_Tuner-212.R Saving _problems/test_Tuner-242.R Saving _problems/test_Tuner-294.R Saving _problems/test_Tuner-336.R Saving _problems/test_Tuner-355.R Saving _problems/test_TunerBatchCmaes-19.R Saving _problems/test_TunerBatchDesignPoints-3.R Saving _problems/test_TunerBatchFromOptimizerBatch-13.R Saving _problems/test_TunerBatchGenSA-4.R Saving _problems/test_TunerBatchGenSA-23.R Saving _problems/test_TunerBatchGenSA-31.R Saving _problems/test_TunerBatchGridSearch-2.R Saving _problems/test_TunerBatchGridSearch-22.R # 2025-12-19 17:55:07 GMT: Initialization # Elitist race # Elitist new instances: 1 # Elitist limit: 2 # nbIterations: 2 # minNbSurvival: 2 # nbParameters: 1 # seed: 1838032318 # confidence level: 0.95 # budget: 42 # mu: 5 # deterministic: FALSE # 2025-12-19 17:55:07 GMT: Iteration 1 of 2 # experimentsUsed: 0 # remainingBudget: 42 # currentBudget: 21 # nbConfigurations: 3 # Markers: x No test is performed. c Configurations are discarded only due to capping. - The test is performed and some configurations are discarded. = The test is performed but no configuration is discarded. ! The test is performed and configurations could be discarded but elite configurations are preserved. . All alive configurations are elite and nothing is discarded. +-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+ | | Instance| Alive| Best| Mean best| Exp so far| W time| rho|KenW| Qvar| +-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+ Saving _problems/test_TunerBatchIrace-4.R Saving _problems/test_TunerBatchNLoptr-5.R Saving _problems/test_TunerBatchRandomSearch-2.R Saving _problems/test_TunerInternal-18.R Saving _problems/test_TuningInstanceBatchMultiCrit-19.R Saving _problems/test_TuningInstanceBatchMultiCrit-35.R Saving _problems/test_TuningInstanceBatchMultiCrit-64.R Saving _problems/test_TuningInstanceBatchMultiCrit-114.R Saving _problems/test_TuningInstanceBatchMultiCrit-129.R Saving _problems/test_TuningInstanceBatchMultiCrit-186.R Saving _problems/test_TuningInstanceBatchSingleCrit-9.R Saving _problems/test_TuningInstanceBatchSingleCrit-46.R Saving _problems/test_TuningInstanceBatchSingleCrit-55.R Saving _problems/test_TuningInstanceBatchSingleCrit-76.R Saving _problems/test_TuningInstanceBatchSingleCrit-99.R Saving _problems/test_TuningInstanceBatchSingleCrit-128.R Saving _problems/test_TuningInstanceBatchSingleCrit-136.R Saving _problems/test_TuningInstanceBatchSingleCrit-170.R Saving _problems/test_TuningInstanceBatchSingleCrit-220.R Saving _problems/test_TuningInstanceBatchSingleCrit-237.R Saving _problems/test_TuningInstanceBatchSingleCrit-413.R Saving _problems/test_TuningInstanceBatchSingleCrit-428.R Saving _problems/test_TuningInstanceBatchSingleCrit-459.R Saving _problems/test_TuningInstanceBatchSingleCrit-484.R Saving _problems/test_error_handling-18.R Saving _problems/test_error_handling-36.R Saving _problems/test_extract_inner_tuning_archives-11.R Saving _problems/test_extract_inner_tuning_archives-131.R Saving _problems/test_extract_inner_tuning_results-11.R Saving _problems/test_extract_inner_tuning_results-131.R Saving _problems/test_mlr_callbacks-14.R Saving _problems/test_mlr_callbacks-31.R Saving _problems/test_mlr_callbacks-290.R Saving _problems/test_mlr_callbacks-307.R Saving _problems/test_mlr_callbacks-340.R Saving _problems/test_mlr_callbacks-445.R Saving _problems/test_trafos-10.R Saving _problems/test_trafos-34.R Saving _problems/test_tune-4.R Saving _problems/test_tune-14.R Saving _problems/test_tune-24.R Saving _problems/test_tune_nested-6.R [ FAIL 113 | WARN 9 | SKIP 68 | PASS 192 ] ══ Skipped tests (68) ══════════════════════════════════════════════════════════ • On CRAN (68): 'test_ArchiveAsyncTuning.R:2:3', 'test_ArchiveAsyncTuning.R:61:3', 'test_ArchiveAsyncTuning.R:119:3', 'test_ArchiveAsyncTuning.R:146:3', 'test_ArchiveAsyncTuning.R:169:3', 'test_ArchiveAsyncTuning.R:209:3', 'test_ArchiveAsyncTuning.R:251:3', 'test_ArchiveAsyncTuning.R:284:3', 'test_ArchiveAsyncTuningFrozen.R:2:3', 'test_AutoTuner.R:640:3', 'test_CallbackAsyncTuning.R:4:3', 'test_CallbackAsyncTuning.R:33:3', 'test_CallbackAsyncTuning.R:64:3', 'test_CallbackAsyncTuning.R:93:3', 'test_CallbackAsyncTuning.R:124:3', 'test_CallbackAsyncTuning.R:160:3', 'test_CallbackAsyncTuning.R:188:3', 'test_CallbackAsyncTuning.R:222:3', 'test_CallbackAsyncTuning.R:252:3', 'test_CallbackAsyncTuning.R:281:3', 'test_CallbackAsyncTuning.R:312:3', 'test_CallbackAsyncTuning.R:343:3', 'test_CallbackAsyncTuning.R:373:3', 'test_CallbackAsyncTuning.R:405:3', 'test_CallbackAsyncTuning.R:443:3', 'test_CallbackAsyncTuning.R:480:3', 'test_CallbackAsyncTuning.R:516:3', 'test_Tuner.R:53:1', 'test_TunerAsyncDesignPoints.R:2:3', 'test_TunerAsyncGridSearch.R:2:3', 'test_TunerAsyncRandomSearch.R:2:3', 'test_TuningInstanceAsyncMultiCrit.R:2:3', 'test_TuningInstanceAsyncMultiCrit.R:30:3', 'test_TuningInstanceAsyncMultiCrit.R:57:3', 'test_TuningInstanceAsyncMultiCrit.R:81:3', 'test_TuningInstanceAsyncMultiCrit.R:106:3', 'test_TuningInstanceAsyncMultiCrit.R:134:3', 'test_TuningInstanceAsyncMultiCrit.R:189:3', 'test_TuningInstanceAsyncMultiCrit.R:236:3', 'test_TuningInstanceAsyncMultiCrit.R:261:3', 'test_TuningInstanceAsyncSingleCrit.R:2:3', 'test_TuningInstanceAsyncSingleCrit.R:29:3', 'test_TuningInstanceAsyncSingleCrit.R:54:3', 'test_TuningInstanceAsyncSingleCrit.R:78:3', 'test_TuningInstanceAsyncSingleCrit.R:104:3', 'test_TuningInstanceAsyncSingleCrit.R:131:3', 'test_TuningInstanceAsyncSingleCrit.R:182:3', 'test_TuningInstanceAsyncSingleCrit.R:213:3', 'test_TuningInstanceAsyncSingleCrit.R:226:3', 'test_TuningInstanceAsyncSingleCrit.R:240:3', 'test_TuningInstanceAsyncSingleCrit.R:266:3', 'test_auto_tuner.R:25:3', 'test_auto_tuner.R:48:3', 'test_mlr_callbacks.R:40:3', 'test_mlr_callbacks.R:93:3', 'test_mlr_callbacks.R:117:3', 'test_mlr_callbacks.R:141:3', 'test_mlr_callbacks.R:162:3', 'test_mlr_callbacks.R:192:3', 'test_mlr_callbacks.R:218:3', 'test_mlr_callbacks.R:251:3', 'test_mlr_callbacks.R:410:3', 'test_mlr_callbacks.R:452:3', 'test_mlr_callbacks.R:480:3', 'test_ti_async.R:2:3', 'test_ti_async.R:16:3', 'test_ti_async.R:30:3', 'test_ti_async.R:42:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ArchiveBatchTuning.R:11:3'): ArchiveTuning access methods work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:11:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchTuning.R:126:3'): ArchiveTuning as.data.table function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:126:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchTuning.R:277:3'): ArchiveBatchTuning as.data.table function works for internally tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:277:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:10:3'): AutoTuner / train+predict ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:10:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:42:3'): AutoTuner / resample ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, r_outer, store_models = TRUE) at test_AutoTuner.R:42:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:77:3'): nested resamppling results are consistent ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), lrn, cv2, store_models = TRUE) at test_AutoTuner.R:77:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:93:3'): AT training does not change learner in instance args ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:93:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:118:3'): AutoTuner works with graphlearner ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:118:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:155:3'): Nested resampling works with graphlearner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_AutoTuner.R:155:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:184:3'): store_tuning_instance, store_benchmark_result and store_models flags work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:184:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:246:3'): predict_type works ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:246:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:282:3'): search space from TuneToken works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("iris")) at test_AutoTuner.R:282:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:308:3'): AutoTuner get_base_learner method works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("pima")) at test_AutoTuner.R:308:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:373:3'): AutoTuner hash works #647 in mlr3 ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_AutoTuner.R:373:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:389:3'): AutoTuner works with empty search space ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("pima")) at test_AutoTuner.R:389:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:420:3'): AutoTuner importance method works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("penguins")) at test_AutoTuner.R:420:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:434:3'): AutoTuner selected_features method works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("penguins")) at test_AutoTuner.R:434:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:480:3'): AutoTuner works with instantiated resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:480:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:606:3'): marshalable learner ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:606:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:625:3'): marshal ─────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:625:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:676:3'): AutoTuner works with internal tuning and validation ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:676:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:699:3'): AutoTuner works when internal_search_space is part of primary search space ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:699:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:10:3'): on_optimization_begin works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:10:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:30:3'): on_optimization_end works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:30:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:52:3'): on_optimizer_after_eval works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:52:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:73:3'): on_optimizer_after_eval works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:73:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:96:3'): on_eval_after_design works ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:96:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:120:3'): on_eval_after_benchmark and on_eval_before_archive works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:120:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:143:3'): on_tuning_result_begin in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:143:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:164:3'): on_result_end in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:164:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:184:3'): on_result in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:184:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:207:3'): on_tuning_result_begin in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:207:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:228:3'): on_result_end in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:228:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:248:3'): on_result in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:248:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:277:3'): on_resample_begin works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:277:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:305:3'): on_resample_before_train works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:305:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:332:3'): on_resample_before_predict works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:332:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:360:3'): on_resample_end works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:360:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:12:3'): objective async works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:12:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:32:3'): store benchmark result works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:32:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:54:3'): store models works ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:54:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:76:3'): rush objective with multiple measures works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:76:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:14:3'): ObjectiveTuningBatch ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:14:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:37:3'): ObjectiveTuningBatch - Multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:37:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:52:3'): ObjectiveTuningBatch - Store models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:52:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:69:3'): runtime of learners is added ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:69:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:105:3'): tuner can modify resampling ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─instance$eval_batch(data.table(cp = 0.001)) at test_ObjectiveTuningBatch.R:105:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:128:3'): benchmark clone works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, clone = c()) at test_ObjectiveTuningBatch.R:128:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:149:3'): objects are cloned ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:149:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:5:5'): API ───────────────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(rs$optimize(inst), nrows = 1) at test_Tuner.R:5:5 2. │ └─checkmate::checkDataTable(...) 3. └─rs$optimize(inst) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:46:3'): we get a result when some subordinate params are not fulfilled ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(d) at test_Tuner.R:46:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:90:3'): Tuner works with graphlearner ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_Tuner.R:90:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:121:3'): Tuner works with instantiated resampling ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─rs$optimize(inst) at test_Tuner.R:121:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:182:3'): internal single crit ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:182:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:205:3'): internal single crit without benchmark_result ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:205:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:235:3'): internal multi crit ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:235:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:294:3'): internal tuning: branching ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_Tuner.R:294:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:325:3'): parameter transformations can be used with internal tuning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:325:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:348:3'): tag internal tune token manually in primary search space ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:348:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchCmaes.R:12:3'): TunerBatchCmaes ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchCmaes.R:12:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchCmaes__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─adagio::pureCMAES(...) 18. └─adagio (local) fun(arx[, k]) 19. └─bbotk (local) fct(x, ...) 20. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 21. └─private$.objective_function(x, self, self$objective_multiplicator) 22. └─inst$eval_batch(xdt) 23. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 24. └─self$objective$eval_many(xss_trafoed) 25. └─bbotk:::.__Objective__eval_many(...) 26. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 27. │ └─base::eval.parent(expr, n = 1L) 28. │ └─base::eval(expr, p) 29. │ └─base::eval(expr, p) 30. └─private$.eval_many(xss = xss, resampling = `<list>`) 31. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 32. └─mlr3::benchmark(...) 33. └─ResultData$new(grid, data_extra, store_backends = store_backends) 34. └─mlr3 (local) initialize(...) 35. └─mlr3:::.__ResultData__initialize(...) 36. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 37. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchDesignPoints.R:3:3'): TunerBatchDesignPoints ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner(...) at test_TunerBatchDesignPoints.R:3:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchFromOptimizerBatch.R:13:3'): TunerBatchFromOptimizerBatch parameter set works after cloning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner_2$optimize(instance) at test_TunerBatchFromOptimizerBatch.R:13:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:4:3'): TunerBatchGenSA ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global test_tuner("gensa") at test_TunerBatchGenSA.R:4:3 2. │ └─tuner$optimize(inst) 3. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. │ └─private$.optimizer$optimize(inst) 5. │ └─bbotk:::.__OptimizerBatch__optimize(...) 6. │ └─bbotk::optimize_batch_default(inst, self) 7. │ ├─base::tryCatch(...) 8. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. │ └─get_private(optimizer)$.optimize(instance) 12. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 13. │ └─GenSA::GenSA(...) 14. └─GenSA (local) `<fn>`(`<dbl>`) 15. └─bbotk (local) fn(par, ...) 16. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 17. └─private$.objective_function(x, self, self$objective_multiplicator) 18. └─inst$eval_batch(xdt) 19. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 20. └─self$objective$eval_many(xss_trafoed) 21. └─bbotk:::.__Objective__eval_many(...) 22. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 23. │ └─base::eval.parent(expr, n = 1L) 24. │ └─base::eval(expr, p) 25. │ └─base::eval(expr, p) 26. └─private$.eval_many(xss = xss, resampling = `<list>`) 27. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 28. └─mlr3::benchmark(...) 29. └─ResultData$new(grid, data_extra, store_backends = store_backends) 30. └─mlr3 (local) initialize(...) 31. └─mlr3:::.__ResultData__initialize(...) 32. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 33. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:23:3'): TunerBatchGenSA with int params and trafo ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─tt$optimize(inst) at test_TunerBatchGenSA.R:23:3 2. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. │ └─private$.optimizer$optimize(inst) 4. │ └─bbotk:::.__OptimizerBatch__optimize(...) 5. │ └─bbotk::optimize_batch_default(inst, self) 6. │ ├─base::tryCatch(...) 7. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. │ └─get_private(optimizer)$.optimize(instance) 11. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 12. │ └─GenSA::GenSA(...) 13. └─GenSA (local) `<fn>`(`<dbl>`) 14. └─bbotk (local) fn(par, ...) 15. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 16. └─private$.objective_function(x, self, self$objective_multiplicator) 17. └─inst$eval_batch(xdt) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:31:3'): TunerBatchGenSA - Optimize wrapper with maximize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─tt$optimize(inst) at test_TunerBatchGenSA.R:31:3 2. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. │ └─private$.optimizer$optimize(inst) 4. │ └─bbotk:::.__OptimizerBatch__optimize(...) 5. │ └─bbotk::optimize_batch_default(inst, self) 6. │ ├─base::tryCatch(...) 7. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. │ └─get_private(optimizer)$.optimize(instance) 11. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 12. │ └─GenSA::GenSA(...) 13. └─GenSA (local) `<fn>`(`<dbl>`) 14. └─bbotk (local) fn(par, ...) 15. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 16. └─private$.objective_function(x, self, self$objective_multiplicator) 17. └─inst$eval_batch(xdt) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGridSearch.R:2:3'): TunerGridSearch ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner(...) at test_TunerBatchGridSearch.R:2:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGridSearch.R:22:3'): TunerGridSearch with TerminatorNone ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TunerBatchGridSearch.R:22:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:4:3'): TunerIrace ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("irace", term_evals = 42) at test_TunerBatchIrace.R:4:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 13. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─irace::irace(scenario = scenario) 18. └─irace:::irace_common(scenario, simple = TRUE) 19. └─irace:::irace_run(scenario = scenario) 20. └─irace:::elitist_race(...) 21. └─irace:::race_wrapper(...) 22. └─irace:::race_wrapper_helper(...) 23. └─irace:::execute_experiments(...) 24. └─scenario$targetRunnerParallel(...) 25. └─tuning_instance$eval_batch(xdt) 26. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 27. └─self$objective$eval_many(xss_trafoed) 28. └─bbotk:::.__Objective__eval_many(...) 29. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 30. │ └─base::eval.parent(expr, n = 1L) 31. │ └─base::eval(expr, p) 32. │ └─base::eval(expr, p) 33. └─private$.eval_many(xss = xss, resampling = `<list>`) 34. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 35. └─mlr3::benchmark(...) 36. └─ResultData$new(grid, data_extra, store_backends = store_backends) 37. └─mlr3 (local) initialize(...) 38. └─mlr3:::.__ResultData__initialize(...) 39. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 40. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:37:36'): TunerIrace works with dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:37:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. └─tuner$optimize(instance) at test_TunerBatchIrace.R:37:36 6. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 7. └─private$.optimizer$optimize(inst) 8. └─bbotk:::.__OptimizerBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 16. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─irace::irace(scenario = scenario) 21. └─irace:::irace_common(scenario, simple = TRUE) 22. └─irace:::irace_run(scenario = scenario) 23. └─irace:::elitist_race(...) 24. └─irace:::race_wrapper(...) 25. └─irace:::race_wrapper_helper(...) 26. └─irace:::execute_experiments(...) 27. └─scenario$targetRunnerParallel(...) 28. └─tuning_instance$eval_batch(xdt) 29. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 30. └─self$objective$eval_many(xss_trafoed) 31. └─bbotk:::.__Objective__eval_many(...) 32. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 33. │ └─base::eval.parent(expr, n = 1L) 34. │ └─base::eval(expr, p) 35. │ └─base::eval(expr, p) 36. └─private$.eval_many(xss = xss, resampling = `<list>`) 37. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 38. └─mlr3::benchmark(...) 39. └─ResultData$new(grid, data_extra, store_backends = store_backends) 40. └─mlr3 (local) initialize(...) 41. └─mlr3:::.__ResultData__initialize(...) 42. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 43. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:56:36'): TunerIrace works with logical parameters ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:56:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. └─tuner$optimize(instance) at test_TunerBatchIrace.R:56:36 6. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 7. └─private$.optimizer$optimize(inst) 8. └─bbotk:::.__OptimizerBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 16. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─irace::irace(scenario = scenario) 21. └─irace:::irace_common(scenario, simple = TRUE) 22. └─irace:::irace_run(scenario = scenario) 23. └─irace:::elitist_race(...) 24. └─irace:::race_wrapper(...) 25. └─irace:::race_wrapper_helper(...) 26. └─irace:::execute_experiments(...) 27. └─scenario$targetRunnerParallel(...) 28. └─tuning_instance$eval_batch(xdt) 29. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 30. └─self$objective$eval_many(xss_trafoed) 31. └─bbotk:::.__Objective__eval_many(...) 32. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 33. │ └─base::eval.parent(expr, n = 1L) 34. │ └─base::eval(expr, p) 35. │ └─base::eval(expr, p) 36. └─private$.eval_many(xss = xss, resampling = `<list>`) 37. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 38. └─mlr3::benchmark(...) 39. └─ResultData$new(grid, data_extra, store_backends = store_backends) 40. └─mlr3 (local) initialize(...) 41. └─mlr3:::.__ResultData__initialize(...) 42. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 43. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:70:36'): TunerIrace uses digits ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:70:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. ├─checkmate::expect_data_table(tuner$optimize(instance)) at test_TunerBatchIrace.R:70:36 6. │ └─checkmate::checkDataTable(...) 7. └─tuner$optimize(instance) 8. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 9. └─private$.optimizer$optimize(inst) 10. └─bbotk:::.__OptimizerBatch__optimize(...) 11. └─bbotk::optimize_batch_default(inst, self) 12. ├─base::tryCatch(...) 13. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 14. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 15. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 16. └─get_private(optimizer)$.optimize(instance) 17. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 18. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─irace::irace(scenario = scenario) 23. └─irace:::irace_common(scenario, simple = TRUE) 24. └─irace:::irace_run(scenario = scenario) 25. └─irace:::elitist_race(...) 26. └─irace:::race_wrapper(...) 27. └─irace:::race_wrapper_helper(...) 28. └─irace:::execute_experiments(...) 29. └─scenario$targetRunnerParallel(...) 30. └─tuning_instance$eval_batch(xdt) 31. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 32. └─self$objective$eval_many(xss_trafoed) 33. └─bbotk:::.__Objective__eval_many(...) 34. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 35. │ └─base::eval.parent(expr, n = 1L) 36. │ └─base::eval(expr, p) 37. │ └─base::eval(expr, p) 38. └─private$.eval_many(xss = xss, resampling = `<list>`) 39. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 40. └─mlr3::benchmark(...) 41. └─ResultData$new(grid, data_extra, store_backends = store_backends) 42. └─mlr3 (local) initialize(...) 43. └─mlr3:::.__ResultData__initialize(...) 44. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 45. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:84:36'): TunerIrace works with unnamed discrete values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:84:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. ├─checkmate::expect_data_table(tuner$optimize(instance)) at test_TunerBatchIrace.R:84:36 6. │ └─checkmate::checkDataTable(...) 7. └─tuner$optimize(instance) 8. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 9. └─private$.optimizer$optimize(inst) 10. └─bbotk:::.__OptimizerBatch__optimize(...) 11. └─bbotk::optimize_batch_default(inst, self) 12. ├─base::tryCatch(...) 13. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 14. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 15. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 16. └─get_private(optimizer)$.optimize(instance) 17. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 18. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─irace::irace(scenario = scenario) 23. └─irace:::irace_common(scenario, simple = TRUE) 24. └─irace:::irace_run(scenario = scenario) 25. └─irace:::elitist_race(...) 26. └─irace:::race_wrapper(...) 27. └─irace:::race_wrapper_helper(...) 28. └─irace:::execute_experiments(...) 29. └─scenario$targetRunnerParallel(...) 30. └─tuning_instance$eval_batch(xdt) 31. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 32. └─self$objective$eval_many(xss_trafoed) 33. └─bbotk:::.__Objective__eval_many(...) 34. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 35. │ └─base::eval.parent(expr, n = 1L) 36. │ └─base::eval(expr, p) 37. │ └─base::eval(expr, p) 38. └─private$.eval_many(xss = xss, resampling = `<list>`) 39. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 40. └─mlr3::benchmark(...) 41. └─ResultData$new(grid, data_extra, store_backends = store_backends) 42. └─mlr3 (local) initialize(...) 43. └─mlr3:::.__ResultData__initialize(...) 44. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 45. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchNLoptr.R:5:3'): TunerNLoptr ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("nloptr", algorithm = "NLOPT_LN_BOBYQA", term_evals = 4) at test_TunerBatchNLoptr.R:5:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchNLoptr__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─nloptr::nloptr(...) 18. └─bbotk (local) eval_f(x0, ...) 19. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 20. └─private$.objective_function(x, self, self$objective_multiplicator) 21. └─inst$eval_batch(xdt) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchRandomSearch.R:2:3'): TunerRandomSearch ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("random_search") at test_TunerBatchRandomSearch.R:2:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerInternal.R:18:3'): tuner internal works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerInternal.R:18:3 2. └─mlr3tuning:::.__TunerBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3tuning:::.__TunerBatchInternal__.optimize(...) 10. └─inst$eval_batch(data.table()) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(list(list())) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:19:3'): tuning with multiple objectives ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchMultiCrit.R:19:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:35:3'): store_benchmark_result and store_models flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchMultiCrit.R:35:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:64:3'): check_values flag with parameter set dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchMultiCrit.R:64:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:114:3'): TuneToken and result_learner_param_vals works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchMultiCrit.R:114:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:122:3'): TuningInstanceBatchMultiCrit and empty search space works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TuningInstanceBatchMultiCrit.R:122:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(list(list())) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:186:3'): Batch multi-crit internal tuning works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), min.rows = 1) at test_TuningInstanceBatchMultiCrit.R:186:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:9:3'): TuningInstanceBatchSingleCrit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchSingleCrit.R:9:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:46:3'): archive one row (#40) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(data.table(cp = 0.1)) at test_TuningInstanceBatchSingleCrit.R:46:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:55:3'): eval_batch and termination ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(design[1:2, ]) at test_TuningInstanceBatchSingleCrit.R:55:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:76:3'): the same experiment can be added twice ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(d) at test_TuningInstanceBatchSingleCrit.R:76:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:99:3'): tuning with custom resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:99:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:128:3'): non-scalar hyperpars (#201) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tnr("random_search")$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:128:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:136:3'): store_benchmark_result and store_models flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchSingleCrit.R:136:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:170:3'): check_values flag with parameter set dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:170:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:220:3'): TuneToken and result_learner_param_vals works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchSingleCrit.R:220:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:230:3'): TuningInstanceBatchSingleCrit and empty search space works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TuningInstanceBatchSingleCrit.R:230:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(list(list())) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:413:3'): objective contains no benchmark results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchSingleCrit.R:413:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(list(list())) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:422:3'): dependencies in defaults work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_class(...) at test_TuningInstanceBatchSingleCrit.R:422:3 2. │ └─checkmate::checkClass(x, classes, ordered, null.ok) 3. └─mlr3tuning::tune(...) 4. └─tuner$optimize(instance) 5. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 6. └─private$.optimizer$optimize(inst) 7. └─bbotk:::.__OptimizerBatch__optimize(...) 8. └─bbotk::optimize_batch_default(inst, self) 9. ├─base::tryCatch(...) 10. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 11. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 12. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 13. └─get_private(optimizer)$.optimize(instance) 14. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 15. └─inst$eval_batch(design$data) 16. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 17. └─self$objective$eval_many(xss_trafoed) 18. └─bbotk:::.__Objective__eval_many(...) 19. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 20. │ └─base::eval.parent(expr, n = 1L) 21. │ └─base::eval(expr, p) 22. │ └─base::eval(expr, p) 23. └─private$.eval_many(xss = xss, resampling = `<list>`) 24. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 25. └─mlr3::benchmark(...) 26. └─ResultData$new(grid, data_extra, store_backends = store_backends) 27. └─mlr3 (local) initialize(...) 28. └─mlr3:::.__ResultData__initialize(...) 29. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 30. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:459:3'): Batch single-crit internal tuning works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1) at test_TuningInstanceBatchSingleCrit.R:459:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Failure ('test_TuningInstanceBatchSingleCrit.R:478:3'): required parameter can be tuned internally without having a value set ── Expected `tune(...)` not to throw any errors. Actually got a <simpleError> with message: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_error(...) at test_TuningInstanceBatchSingleCrit.R:478:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. └─mlr3tuning::tune(...) 8. └─tuner$optimize(instance) 9. └─mlr3tuning:::.__TunerBatch__optimize(...) 10. └─bbotk::optimize_batch_default(inst, self) 11. ├─base::tryCatch(...) 12. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 13. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 14. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 15. └─get_private(optimizer)$.optimize(instance) 16. └─mlr3tuning:::.__TunerBatchInternal__.optimize(...) 17. └─inst$eval_batch(data.table()) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(list(list())) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_error_handling.R:18:3'): failing learner ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tt$optimize(instance) at test_error_handling.R:18:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_error_handling.R:36:3'): predictions missing ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─mlr3tuning:::expect_resample_error(tt$optimize(instance), "missing") at test_error_handling.R:36:3 2. │ ├─base::withCallingHandlers(...) at ./helper.R:26:3 3. │ └─testthat::expect_error(...) 4. │ └─testthat:::expect_condition_matching_(...) 5. │ └─testthat:::quasi_capture(...) 6. │ ├─testthat (local) .capture(...) 7. │ │ └─base::withCallingHandlers(...) 8. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 9. └─tt$optimize(instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test_extract_inner_tuning_archives.R:11:3'): extract_inner_tuning_archives function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_archives.R:11:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_archives.R:131:3'): works with internal tuning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(...) at test_extract_inner_tuning_archives.R:131:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_results.R:11:3'): extract_inner_tuning_results function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_results.R:11:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_results.R:131:3'): extract_inner_tuning_results returns tuning_instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("penguins"), at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_results.R:131:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_mlr_callbacks.R:6:3'): backup callback works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:6:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:23:3'): backup callback works with standalone tuner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:23:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:282:3'): batch default configuration callback works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:282:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:299:3'): batch default configuration callback works with logscale ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:299:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:332:3'): batch default configuration callback works without transformation and with logscale ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:332:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:437:3'): one se rule callback works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:437:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_trafos.R:10:3'): simple exp trafo works ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_trafos.R:10:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_trafos.R:34:3'): trafo where param names change ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_trafos.R:34:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:3:3'): tune function works with one measure ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:3:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:13:3'): tune function works with multiple measures ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:13:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:23:3'): tune function works without measure ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:23:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune_nested.R:5:3'): tune_nested function works ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune_nested(...) at test_tune_nested.R:5:3 2. └─mlr3::resample(task, at, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) [ FAIL 113 | WARN 9 | SKIP 68 | PASS 192 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 1.5.1
Check: examples
Result: ERROR Running examples in ‘mlr3tuning-Ex.R’ failed The error most likely occurred in: > ### Name: AutoTuner > ### Title: Class for Automatic Tuning > ### Aliases: AutoTuner > > ### ** Examples > > # Automatic Tuning > > # split to train and external set > task = tsk("penguins") > split = partition(task, ratio = 0.8) > > # load learner and set search space > learner = lrn("classif.rpart", + cp = to_tune(1e-04, 1e-1, logscale = TRUE) + ) > > # create auto tuner > at = auto_tuner( + tuner = tnr("random_search"), + learner = learner, + resampling = rsmp ("holdout"), + measure = msr("classif.ce"), + term_evals = 4) > > # tune hyperparameters and fit final model > at$train(task, row_ids = split$train) INFO [12:31:49.692] [bbotk] Starting to optimize 1 parameter(s) with '<OptimizerBatchRandomSearch>' and '<TerminatorEvals> [n_evals=4, k=0]' INFO [12:31:49.978] [bbotk] Evaluating 1 configuration(s) INFO [12:31:50.038] [mlr3] Running benchmark with 1 resampling iterations INFO [12:31:50.288] [mlr3] Applying learner 'classif.rpart' on task 'penguins' (iter 1/1) INFO [12:31:50.374] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: <Anonymous> ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.5.1
Check: tests
Result: ERROR Running ‘testthat.R’ [148s/185s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("checkmate") + library("mlr3tuning") + test_check("mlr3tuning") + } Loading required package: mlr3 Loading required package: paradox Saving _problems/test_ArchiveBatchTuning-11.R Saving _problems/test_ArchiveBatchTuning-126.R Saving _problems/test_ArchiveBatchTuning-277.R Saving _problems/test_AutoTuner-10.R Saving _problems/test_AutoTuner-42.R Saving _problems/test_AutoTuner-77.R Saving _problems/test_AutoTuner-93.R Saving _problems/test_AutoTuner-118.R Saving _problems/test_AutoTuner-155.R Saving _problems/test_AutoTuner-184.R Saving _problems/test_AutoTuner-246.R Saving _problems/test_AutoTuner-282.R Saving _problems/test_AutoTuner-308.R Saving _problems/test_AutoTuner-373.R Saving _problems/test_AutoTuner-389.R Saving _problems/test_AutoTuner-420.R Saving _problems/test_AutoTuner-434.R Saving _problems/test_AutoTuner-480.R Saving _problems/test_AutoTuner-606.R Saving _problems/test_AutoTuner-625.R Saving _problems/test_AutoTuner-676.R Saving _problems/test_AutoTuner-699.R Saving _problems/test_CallbackBatchTuning-17.R Saving _problems/test_CallbackBatchTuning-37.R Saving _problems/test_CallbackBatchTuning-59.R Saving _problems/test_CallbackBatchTuning-80.R Saving _problems/test_CallbackBatchTuning-103.R Saving _problems/test_CallbackBatchTuning-127.R Saving _problems/test_CallbackBatchTuning-150.R Saving _problems/test_CallbackBatchTuning-171.R Saving _problems/test_CallbackBatchTuning-191.R Saving _problems/test_CallbackBatchTuning-214.R Saving _problems/test_CallbackBatchTuning-235.R Saving _problems/test_CallbackBatchTuning-255.R Saving _problems/test_CallbackBatchTuning-284.R Saving _problems/test_CallbackBatchTuning-312.R Saving _problems/test_CallbackBatchTuning-339.R Saving _problems/test_CallbackBatchTuning-367.R Saving _problems/test_ObjectiveTuningAsync-12.R Saving _problems/test_ObjectiveTuningAsync-32.R Saving _problems/test_ObjectiveTuningAsync-54.R Saving _problems/test_ObjectiveTuningAsync-76.R Saving _problems/test_ObjectiveTuningBatch-14.R Saving _problems/test_ObjectiveTuningBatch-37.R Saving _problems/test_ObjectiveTuningBatch-52.R Saving _problems/test_ObjectiveTuningBatch-69.R Saving _problems/test_ObjectiveTuningBatch-105.R Saving _problems/test_ObjectiveTuningBatch-128.R Saving _problems/test_ObjectiveTuningBatch-149.R Saving _problems/test_Tuner-5.R Saving _problems/test_Tuner-46.R Saving _problems/test_Tuner-90.R Saving _problems/test_Tuner-121.R Saving _problems/test_Tuner-188.R Saving _problems/test_Tuner-212.R Saving _problems/test_Tuner-242.R Saving _problems/test_Tuner-294.R Saving _problems/test_Tuner-336.R Saving _problems/test_Tuner-355.R Saving _problems/test_TunerBatchCmaes-19.R Saving _problems/test_TunerBatchDesignPoints-3.R Saving _problems/test_TunerBatchFromOptimizerBatch-13.R Saving _problems/test_TunerBatchGenSA-4.R Saving _problems/test_TunerBatchGenSA-23.R Saving _problems/test_TunerBatchGenSA-31.R Saving _problems/test_TunerBatchGridSearch-2.R Saving _problems/test_TunerBatchGridSearch-22.R # 2025-12-19 12:33:32 GMT: Initialization # Elitist race # Elitist new instances: 1 # Elitist limit: 2 # nbIterations: 2 # minNbSurvival: 2 # nbParameters: 1 # seed: 1957750406 # confidence level: 0.95 # budget: 42 # mu: 5 # deterministic: FALSE # 2025-12-19 12:33:33 GMT: Iteration 1 of 2 # experimentsUsed: 0 # remainingBudget: 42 # currentBudget: 21 # nbConfigurations: 3 # Markers: x No test is performed. c Configurations are discarded only due to capping. - The test is performed and some configurations are discarded. = The test is performed but no configuration is discarded. ! The test is performed and configurations could be discarded but elite configurations are preserved. . All alive configurations are elite and nothing is discarded. +-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+ | | Instance| Alive| Best| Mean best| Exp so far| W time| rho|KenW| Qvar| +-+-----------+-----------+-----------+----------------+-----------+--------+-----+----+------+ Saving _problems/test_TunerBatchIrace-4.R Saving _problems/test_TunerBatchNLoptr-5.R Saving _problems/test_TunerBatchRandomSearch-2.R Saving _problems/test_TunerInternal-18.R Saving _problems/test_TuningInstanceBatchMultiCrit-19.R Saving _problems/test_TuningInstanceBatchMultiCrit-35.R Saving _problems/test_TuningInstanceBatchMultiCrit-64.R Saving _problems/test_TuningInstanceBatchMultiCrit-114.R Saving _problems/test_TuningInstanceBatchMultiCrit-129.R Saving _problems/test_TuningInstanceBatchMultiCrit-186.R Saving _problems/test_TuningInstanceBatchSingleCrit-9.R Saving _problems/test_TuningInstanceBatchSingleCrit-46.R Saving _problems/test_TuningInstanceBatchSingleCrit-55.R Saving _problems/test_TuningInstanceBatchSingleCrit-76.R Saving _problems/test_TuningInstanceBatchSingleCrit-99.R Saving _problems/test_TuningInstanceBatchSingleCrit-128.R Saving _problems/test_TuningInstanceBatchSingleCrit-136.R Saving _problems/test_TuningInstanceBatchSingleCrit-170.R Saving _problems/test_TuningInstanceBatchSingleCrit-220.R Saving _problems/test_TuningInstanceBatchSingleCrit-237.R Saving _problems/test_TuningInstanceBatchSingleCrit-413.R Saving _problems/test_TuningInstanceBatchSingleCrit-428.R Saving _problems/test_TuningInstanceBatchSingleCrit-459.R Saving _problems/test_TuningInstanceBatchSingleCrit-484.R Saving _problems/test_error_handling-18.R Saving _problems/test_error_handling-36.R Saving _problems/test_extract_inner_tuning_archives-11.R Saving _problems/test_extract_inner_tuning_archives-131.R Saving _problems/test_extract_inner_tuning_results-11.R Saving _problems/test_extract_inner_tuning_results-131.R Saving _problems/test_mlr_callbacks-14.R Saving _problems/test_mlr_callbacks-31.R Saving _problems/test_mlr_callbacks-290.R Saving _problems/test_mlr_callbacks-307.R Saving _problems/test_mlr_callbacks-340.R Saving _problems/test_mlr_callbacks-445.R Saving _problems/test_trafos-10.R Saving _problems/test_trafos-34.R Saving _problems/test_tune-4.R Saving _problems/test_tune-14.R Saving _problems/test_tune-24.R Saving _problems/test_tune_nested-6.R [ FAIL 113 | WARN 9 | SKIP 68 | PASS 192 ] ══ Skipped tests (68) ══════════════════════════════════════════════════════════ • On CRAN (68): 'test_ArchiveAsyncTuning.R:2:3', 'test_ArchiveAsyncTuning.R:61:3', 'test_ArchiveAsyncTuning.R:119:3', 'test_ArchiveAsyncTuning.R:146:3', 'test_ArchiveAsyncTuning.R:169:3', 'test_ArchiveAsyncTuning.R:209:3', 'test_ArchiveAsyncTuning.R:251:3', 'test_ArchiveAsyncTuning.R:284:3', 'test_ArchiveAsyncTuningFrozen.R:2:3', 'test_AutoTuner.R:640:3', 'test_CallbackAsyncTuning.R:4:3', 'test_CallbackAsyncTuning.R:33:3', 'test_CallbackAsyncTuning.R:64:3', 'test_CallbackAsyncTuning.R:93:3', 'test_CallbackAsyncTuning.R:124:3', 'test_CallbackAsyncTuning.R:160:3', 'test_CallbackAsyncTuning.R:188:3', 'test_CallbackAsyncTuning.R:222:3', 'test_CallbackAsyncTuning.R:252:3', 'test_CallbackAsyncTuning.R:281:3', 'test_CallbackAsyncTuning.R:312:3', 'test_CallbackAsyncTuning.R:343:3', 'test_CallbackAsyncTuning.R:373:3', 'test_CallbackAsyncTuning.R:405:3', 'test_CallbackAsyncTuning.R:443:3', 'test_CallbackAsyncTuning.R:480:3', 'test_CallbackAsyncTuning.R:516:3', 'test_Tuner.R:53:1', 'test_TunerAsyncDesignPoints.R:2:3', 'test_TunerAsyncGridSearch.R:2:3', 'test_TunerAsyncRandomSearch.R:2:3', 'test_TuningInstanceAsyncMultiCrit.R:2:3', 'test_TuningInstanceAsyncMultiCrit.R:30:3', 'test_TuningInstanceAsyncMultiCrit.R:57:3', 'test_TuningInstanceAsyncMultiCrit.R:81:3', 'test_TuningInstanceAsyncMultiCrit.R:106:3', 'test_TuningInstanceAsyncMultiCrit.R:134:3', 'test_TuningInstanceAsyncMultiCrit.R:189:3', 'test_TuningInstanceAsyncMultiCrit.R:236:3', 'test_TuningInstanceAsyncMultiCrit.R:261:3', 'test_TuningInstanceAsyncSingleCrit.R:2:3', 'test_TuningInstanceAsyncSingleCrit.R:29:3', 'test_TuningInstanceAsyncSingleCrit.R:54:3', 'test_TuningInstanceAsyncSingleCrit.R:78:3', 'test_TuningInstanceAsyncSingleCrit.R:104:3', 'test_TuningInstanceAsyncSingleCrit.R:131:3', 'test_TuningInstanceAsyncSingleCrit.R:182:3', 'test_TuningInstanceAsyncSingleCrit.R:213:3', 'test_TuningInstanceAsyncSingleCrit.R:226:3', 'test_TuningInstanceAsyncSingleCrit.R:240:3', 'test_TuningInstanceAsyncSingleCrit.R:266:3', 'test_auto_tuner.R:25:3', 'test_auto_tuner.R:48:3', 'test_mlr_callbacks.R:40:3', 'test_mlr_callbacks.R:93:3', 'test_mlr_callbacks.R:117:3', 'test_mlr_callbacks.R:141:3', 'test_mlr_callbacks.R:162:3', 'test_mlr_callbacks.R:192:3', 'test_mlr_callbacks.R:218:3', 'test_mlr_callbacks.R:251:3', 'test_mlr_callbacks.R:410:3', 'test_mlr_callbacks.R:452:3', 'test_mlr_callbacks.R:480:3', 'test_ti_async.R:2:3', 'test_ti_async.R:16:3', 'test_ti_async.R:30:3', 'test_ti_async.R:42:3' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_ArchiveBatchTuning.R:11:3'): ArchiveTuning access methods work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:11:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchTuning.R:126:3'): ArchiveTuning as.data.table function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:126:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_ArchiveBatchTuning.R:277:3'): ArchiveBatchTuning as.data.table function works for internally tuned values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_ArchiveBatchTuning.R:277:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:10:3'): AutoTuner / train+predict ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:10:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:42:3'): AutoTuner / resample ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), at, r_outer, store_models = TRUE) at test_AutoTuner.R:42:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:77:3'): nested resamppling results are consistent ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("iris"), lrn, cv2, store_models = TRUE) at test_AutoTuner.R:77:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:93:3'): AT training does not change learner in instance args ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:93:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:118:3'): AutoTuner works with graphlearner ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:118:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:155:3'): Nested resampling works with graphlearner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_AutoTuner.R:155:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:184:3'): store_tuning_instance, store_benchmark_result and store_models flags work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:184:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 23. └─inst$eval_batch(g$data[inds]) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:246:3'): predict_type works ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:246:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:282:3'): search space from TuneToken works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("iris")) at test_AutoTuner.R:282:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:308:3'): AutoTuner get_base_learner method works ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("pima")) at test_AutoTuner.R:308:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:373:3'): AutoTuner hash works #647 in mlr3 ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, store_models = TRUE) at test_AutoTuner.R:373:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_AutoTuner.R:389:3'): AutoTuner works with empty search space ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("pima")) at test_AutoTuner.R:389:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:420:3'): AutoTuner importance method works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("penguins")) at test_AutoTuner.R:420:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:434:3'): AutoTuner selected_features method works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(tsk("penguins")) at test_AutoTuner.R:434:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:480:3'): AutoTuner works with instantiated resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:480:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:606:3'): marshalable learner ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:606:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:625:3'): marshal ─────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:625:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(list(list())) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:676:3'): AutoTuner works with internal tuning and validation ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:676:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_AutoTuner.R:699:3'): AutoTuner works when internal_search_space is part of primary search space ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─at$train(task) at test_AutoTuner.R:699:3 2. └─mlr3:::.__Learner__train(...) 3. └─mlr3:::learner_train(...) 4. └─mlr3misc::encapsulate(...) 5. ├─mlr3misc::invoke(...) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─mlr3 (local) .f(learner = `<AutoTunr>`, task = `<TskClssf>`) 10. └─get_private(learner)$.train(task) 11. └─mlr3tuning:::.__AutoTuner__.train(...) 12. └─self$tuner$optimize(instance) 13. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 14. └─private$.optimizer$optimize(inst) 15. └─bbotk:::.__OptimizerBatch__optimize(...) 16. └─bbotk::optimize_batch_default(inst, self) 17. ├─base::tryCatch(...) 18. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 19. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 20. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 21. └─get_private(optimizer)$.optimize(instance) 22. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 23. └─inst$eval_batch(design$data) 24. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 25. └─self$objective$eval_many(xss_trafoed) 26. └─bbotk:::.__Objective__eval_many(...) 27. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 28. │ └─base::eval.parent(expr, n = 1L) 29. │ └─base::eval(expr, p) 30. │ └─base::eval(expr, p) 31. └─private$.eval_many(xss = xss, resampling = `<list>`) 32. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 33. └─mlr3::benchmark(...) 34. └─ResultData$new(grid, data_extra, store_backends = store_backends) 35. └─mlr3 (local) initialize(...) 36. └─mlr3:::.__ResultData__initialize(...) 37. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 38. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:10:3'): on_optimization_begin works ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:10:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:30:3'): on_optimization_end works ──────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:30:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:52:3'): on_optimizer_after_eval works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:52:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:73:3'): on_optimizer_after_eval works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:73:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:96:3'): on_eval_after_design works ─────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:96:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:120:3'): on_eval_after_benchmark and on_eval_before_archive works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:120:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:143:3'): on_tuning_result_begin in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:143:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:164:3'): on_result_end in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:164:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:184:3'): on_result in TuningInstanceSingleCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:184:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:207:3'): on_tuning_result_begin in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:207:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:228:3'): on_result_end in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:228:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:248:3'): on_result in TuningInstanceBatchMultiCrit works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:248:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:277:3'): on_resample_begin works ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:277:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:305:3'): on_resample_before_train works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:305:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:332:3'): on_resample_before_predict works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:332:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_CallbackBatchTuning.R:360:3'): on_resample_end works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_CallbackBatchTuning.R:360:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:12:3'): objective async works ─────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:12:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:32:3'): store benchmark result works ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:32:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:54:3'): store models works ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:54:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningAsync.R:76:3'): rush objective with multiple measures works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─objective$eval(xs) at test_ObjectiveTuningAsync.R:76:3 2. └─bbotk:::.__Objective__eval(...) 3. ├─mlr3misc::invoke(private$.eval, xs = xs, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval(xs = xs, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningAsync__.eval(...) 9. └─mlr3::resample(...) 10. └─ResultData$new(data, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:14:3'): ObjectiveTuningBatch ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:14:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:37:3'): ObjectiveTuningBatch - Multiple measures ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:37:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:52:3'): ObjectiveTuningBatch - Store models ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:52:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:69:3'): runtime of learners is added ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:69:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:105:3'): tuner can modify resampling ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─instance$eval_batch(data.table(cp = 0.001)) at test_ObjectiveTuningBatch.R:105:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:128:3'): benchmark clone works ────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(grid, clone = c()) at test_ObjectiveTuningBatch.R:128:3 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_ObjectiveTuningBatch.R:149:3'): objects are cloned ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─obj$eval_many(xss) at test_ObjectiveTuningBatch.R:149:3 2. └─bbotk:::.__Objective__eval_many(...) 3. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 4. │ └─base::eval.parent(expr, n = 1L) 5. │ └─base::eval(expr, p) 6. │ └─base::eval(expr, p) 7. └─private$.eval_many(xss = xss, resampling = `<list>`) 8. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 9. └─mlr3::benchmark(...) 10. └─ResultData$new(grid, data_extra, store_backends = store_backends) 11. └─mlr3 (local) initialize(...) 12. └─mlr3:::.__ResultData__initialize(...) 13. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 14. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:5:5'): API ───────────────────────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(rs$optimize(inst), nrows = 1) at test_Tuner.R:5:5 2. │ └─checkmate::checkDataTable(...) 3. └─rs$optimize(inst) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:46:3'): we get a result when some subordinate params are not fulfilled ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(d) at test_Tuner.R:46:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:90:3'): Tuner works with graphlearner ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_Tuner.R:90:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:121:3'): Tuner works with instantiated resampling ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─rs$optimize(inst) at test_Tuner.R:121:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:182:3'): internal single crit ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:182:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:205:3'): internal single crit without benchmark_result ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:205:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:235:3'): internal multi crit ─────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:235:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:294:3'): internal tuning: branching ──────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_Tuner.R:294:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:325:3'): parameter transformations can be used with internal tuning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:325:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_Tuner.R:348:3'): tag internal tune token manually in primary search space ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_Tuner.R:348:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchCmaes.R:12:3'): TunerBatchCmaes ────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TunerBatchCmaes.R:12:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchCmaes__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─adagio::pureCMAES(...) 18. └─adagio (local) fun(arx[, k]) 19. └─bbotk (local) fct(x, ...) 20. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 21. └─private$.objective_function(x, self, self$objective_multiplicator) 22. └─inst$eval_batch(xdt) 23. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 24. └─self$objective$eval_many(xss_trafoed) 25. └─bbotk:::.__Objective__eval_many(...) 26. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 27. │ └─base::eval.parent(expr, n = 1L) 28. │ └─base::eval(expr, p) 29. │ └─base::eval(expr, p) 30. └─private$.eval_many(xss = xss, resampling = `<list>`) 31. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 32. └─mlr3::benchmark(...) 33. └─ResultData$new(grid, data_extra, store_backends = store_backends) 34. └─mlr3 (local) initialize(...) 35. └─mlr3:::.__ResultData__initialize(...) 36. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 37. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchDesignPoints.R:3:3'): TunerBatchDesignPoints ───────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner(...) at test_TunerBatchDesignPoints.R:3:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 13. └─instance$eval_batch(design[inds, ]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchFromOptimizerBatch.R:13:3'): TunerBatchFromOptimizerBatch parameter set works after cloning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner_2$optimize(instance) at test_TunerBatchFromOptimizerBatch.R:13:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:4:3'): TunerBatchGenSA ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─global test_tuner("gensa") at test_TunerBatchGenSA.R:4:3 2. │ └─tuner$optimize(inst) 3. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. │ └─private$.optimizer$optimize(inst) 5. │ └─bbotk:::.__OptimizerBatch__optimize(...) 6. │ └─bbotk::optimize_batch_default(inst, self) 7. │ ├─base::tryCatch(...) 8. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. │ └─get_private(optimizer)$.optimize(instance) 12. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 13. │ └─GenSA::GenSA(...) 14. └─GenSA (local) `<fn>`(`<dbl>`) 15. └─bbotk (local) fn(par, ...) 16. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 17. └─private$.objective_function(x, self, self$objective_multiplicator) 18. └─inst$eval_batch(xdt) 19. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 20. └─self$objective$eval_many(xss_trafoed) 21. └─bbotk:::.__Objective__eval_many(...) 22. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 23. │ └─base::eval.parent(expr, n = 1L) 24. │ └─base::eval(expr, p) 25. │ └─base::eval(expr, p) 26. └─private$.eval_many(xss = xss, resampling = `<list>`) 27. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 28. └─mlr3::benchmark(...) 29. └─ResultData$new(grid, data_extra, store_backends = store_backends) 30. └─mlr3 (local) initialize(...) 31. └─mlr3:::.__ResultData__initialize(...) 32. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 33. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:23:3'): TunerBatchGenSA with int params and trafo ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─tt$optimize(inst) at test_TunerBatchGenSA.R:23:3 2. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. │ └─private$.optimizer$optimize(inst) 4. │ └─bbotk:::.__OptimizerBatch__optimize(...) 5. │ └─bbotk::optimize_batch_default(inst, self) 6. │ ├─base::tryCatch(...) 7. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. │ └─get_private(optimizer)$.optimize(instance) 11. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 12. │ └─GenSA::GenSA(...) 13. └─GenSA (local) `<fn>`(`<dbl>`) 14. └─bbotk (local) fn(par, ...) 15. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 16. └─private$.objective_function(x, self, self$objective_multiplicator) 17. └─inst$eval_batch(xdt) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGenSA.R:31:3'): TunerBatchGenSA - Optimize wrapper with maximize measure ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─tt$optimize(inst) at test_TunerBatchGenSA.R:31:3 2. │ └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. │ └─private$.optimizer$optimize(inst) 4. │ └─bbotk:::.__OptimizerBatch__optimize(...) 5. │ └─bbotk::optimize_batch_default(inst, self) 6. │ ├─base::tryCatch(...) 7. │ │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. │ └─get_private(optimizer)$.optimize(instance) 11. │ └─bbotk:::.__OptimizerBatchGenSA__.optimize(...) 12. │ └─GenSA::GenSA(...) 13. └─GenSA (local) `<fn>`(`<dbl>`) 14. └─bbotk (local) fn(par, ...) 15. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 16. └─private$.objective_function(x, self, self$objective_multiplicator) 17. └─inst$eval_batch(xdt) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(xss_trafoed) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGridSearch.R:2:3'): TunerGridSearch ────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner(...) at test_TunerBatchGridSearch.R:2:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchGridSearch.R:22:3'): TunerGridSearch with TerminatorNone ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TunerBatchGridSearch.R:22:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:4:3'): TunerIrace ──────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("irace", term_evals = 42) at test_TunerBatchIrace.R:4:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 13. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─irace::irace(scenario = scenario) 18. └─irace:::irace_common(scenario, simple = TRUE) 19. └─irace:::irace_run(scenario = scenario) 20. └─irace:::elitist_race(...) 21. └─irace:::race_wrapper(...) 22. └─irace:::race_wrapper_helper(...) 23. └─irace:::execute_experiments(...) 24. └─scenario$targetRunnerParallel(...) 25. └─tuning_instance$eval_batch(xdt) 26. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 27. └─self$objective$eval_many(xss_trafoed) 28. └─bbotk:::.__Objective__eval_many(...) 29. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 30. │ └─base::eval.parent(expr, n = 1L) 31. │ └─base::eval(expr, p) 32. │ └─base::eval(expr, p) 33. └─private$.eval_many(xss = xss, resampling = `<list>`) 34. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 35. └─mlr3::benchmark(...) 36. └─ResultData$new(grid, data_extra, store_backends = store_backends) 37. └─mlr3 (local) initialize(...) 38. └─mlr3:::.__ResultData__initialize(...) 39. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 40. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:37:36'): TunerIrace works with dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:37:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. └─tuner$optimize(instance) at test_TunerBatchIrace.R:37:36 6. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 7. └─private$.optimizer$optimize(inst) 8. └─bbotk:::.__OptimizerBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 16. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─irace::irace(scenario = scenario) 21. └─irace:::irace_common(scenario, simple = TRUE) 22. └─irace:::irace_run(scenario = scenario) 23. └─irace:::elitist_race(...) 24. └─irace:::race_wrapper(...) 25. └─irace:::race_wrapper_helper(...) 26. └─irace:::execute_experiments(...) 27. └─scenario$targetRunnerParallel(...) 28. └─tuning_instance$eval_batch(xdt) 29. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 30. └─self$objective$eval_many(xss_trafoed) 31. └─bbotk:::.__Objective__eval_many(...) 32. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 33. │ └─base::eval.parent(expr, n = 1L) 34. │ └─base::eval(expr, p) 35. │ └─base::eval(expr, p) 36. └─private$.eval_many(xss = xss, resampling = `<list>`) 37. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 38. └─mlr3::benchmark(...) 39. └─ResultData$new(grid, data_extra, store_backends = store_backends) 40. └─mlr3 (local) initialize(...) 41. └─mlr3:::.__ResultData__initialize(...) 42. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 43. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:56:36'): TunerIrace works with logical parameters ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:56:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. └─tuner$optimize(instance) at test_TunerBatchIrace.R:56:36 6. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 7. └─private$.optimizer$optimize(inst) 8. └─bbotk:::.__OptimizerBatch__optimize(...) 9. └─bbotk::optimize_batch_default(inst, self) 10. ├─base::tryCatch(...) 11. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 12. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 13. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 14. └─get_private(optimizer)$.optimize(instance) 15. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 16. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─irace::irace(scenario = scenario) 21. └─irace:::irace_common(scenario, simple = TRUE) 22. └─irace:::irace_run(scenario = scenario) 23. └─irace:::elitist_race(...) 24. └─irace:::race_wrapper(...) 25. └─irace:::race_wrapper_helper(...) 26. └─irace:::execute_experiments(...) 27. └─scenario$targetRunnerParallel(...) 28. └─tuning_instance$eval_batch(xdt) 29. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 30. └─self$objective$eval_many(xss_trafoed) 31. └─bbotk:::.__Objective__eval_many(...) 32. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 33. │ └─base::eval.parent(expr, n = 1L) 34. │ └─base::eval(expr, p) 35. │ └─base::eval(expr, p) 36. └─private$.eval_many(xss = xss, resampling = `<list>`) 37. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 38. └─mlr3::benchmark(...) 39. └─ResultData$new(grid, data_extra, store_backends = store_backends) 40. └─mlr3 (local) initialize(...) 41. └─mlr3:::.__ResultData__initialize(...) 42. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 43. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:70:36'): TunerIrace uses digits ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:70:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. ├─checkmate::expect_data_table(tuner$optimize(instance)) at test_TunerBatchIrace.R:70:36 6. │ └─checkmate::checkDataTable(...) 7. └─tuner$optimize(instance) 8. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 9. └─private$.optimizer$optimize(inst) 10. └─bbotk:::.__OptimizerBatch__optimize(...) 11. └─bbotk::optimize_batch_default(inst, self) 12. ├─base::tryCatch(...) 13. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 14. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 15. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 16. └─get_private(optimizer)$.optimize(instance) 17. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 18. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─irace::irace(scenario = scenario) 23. └─irace:::irace_common(scenario, simple = TRUE) 24. └─irace:::irace_run(scenario = scenario) 25. └─irace:::elitist_race(...) 26. └─irace:::race_wrapper(...) 27. └─irace:::race_wrapper_helper(...) 28. └─irace:::execute_experiments(...) 29. └─scenario$targetRunnerParallel(...) 30. └─tuning_instance$eval_batch(xdt) 31. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 32. └─self$objective$eval_many(xss_trafoed) 33. └─bbotk:::.__Objective__eval_many(...) 34. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 35. │ └─base::eval.parent(expr, n = 1L) 36. │ └─base::eval(expr, p) 37. │ └─base::eval(expr, p) 38. └─private$.eval_many(xss = xss, resampling = `<list>`) 39. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 40. └─mlr3::benchmark(...) 41. └─ResultData$new(grid, data_extra, store_backends = store_backends) 42. └─mlr3 (local) initialize(...) 43. └─mlr3:::.__ResultData__initialize(...) 44. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 45. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchIrace.R:84:36'): TunerIrace works with unnamed discrete values ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─base::suppressMessages(...) at test_TunerBatchIrace.R:84:3 2. │ └─base::withCallingHandlers(...) 3. ├─utils::capture.output(...) 4. │ └─base::withVisible(...elt(i)) 5. ├─checkmate::expect_data_table(tuner$optimize(instance)) at test_TunerBatchIrace.R:84:36 6. │ └─checkmate::checkDataTable(...) 7. └─tuner$optimize(instance) 8. └─mlr3tuning:::.__TunerBatchIrace__optimize(...) 9. └─private$.optimizer$optimize(inst) 10. └─bbotk:::.__OptimizerBatch__optimize(...) 11. └─bbotk::optimize_batch_default(inst, self) 12. ├─base::tryCatch(...) 13. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 14. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 15. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 16. └─get_private(optimizer)$.optimize(instance) 17. └─bbotk:::.__OptimizerBatchIrace__.optimize(...) 18. ├─mlr3misc::invoke(irace::irace, scenario = scenario, .opts = allow_partial_matching) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─irace::irace(scenario = scenario) 23. └─irace:::irace_common(scenario, simple = TRUE) 24. └─irace:::irace_run(scenario = scenario) 25. └─irace:::elitist_race(...) 26. └─irace:::race_wrapper(...) 27. └─irace:::race_wrapper_helper(...) 28. └─irace:::execute_experiments(...) 29. └─scenario$targetRunnerParallel(...) 30. └─tuning_instance$eval_batch(xdt) 31. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 32. └─self$objective$eval_many(xss_trafoed) 33. └─bbotk:::.__Objective__eval_many(...) 34. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 35. │ └─base::eval.parent(expr, n = 1L) 36. │ └─base::eval(expr, p) 37. │ └─base::eval(expr, p) 38. └─private$.eval_many(xss = xss, resampling = `<list>`) 39. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 40. └─mlr3::benchmark(...) 41. └─ResultData$new(grid, data_extra, store_backends = store_backends) 42. └─mlr3 (local) initialize(...) 43. └─mlr3:::.__ResultData__initialize(...) 44. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 45. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchNLoptr.R:5:3'): TunerNLoptr ────────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("nloptr", algorithm = "NLOPT_LN_BOBYQA", term_evals = 4) at test_TunerBatchNLoptr.R:5:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchNLoptr__.optimize(...) 13. ├─mlr3misc::invoke(...) 14. │ └─base::eval.parent(expr, n = 1L) 15. │ └─base::eval(expr, p) 16. │ └─base::eval(expr, p) 17. └─nloptr::nloptr(...) 18. └─bbotk (local) eval_f(x0, ...) 19. └─bbotk:::.__OptimInstanceBatch__objective_function(...) 20. └─private$.objective_function(x, self, self$objective_multiplicator) 21. └─inst$eval_batch(xdt) 22. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 23. └─self$objective$eval_many(xss_trafoed) 24. └─bbotk:::.__Objective__eval_many(...) 25. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 26. │ └─base::eval.parent(expr, n = 1L) 27. │ └─base::eval(expr, p) 28. │ └─base::eval(expr, p) 29. └─private$.eval_many(xss = xss, resampling = `<list>`) 30. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 31. └─mlr3::benchmark(...) 32. └─ResultData$new(grid, data_extra, store_backends = store_backends) 33. └─mlr3 (local) initialize(...) 34. └─mlr3:::.__ResultData__initialize(...) 35. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 36. └─data.table:::`[.data.table`(...) ── Error ('test_TunerBatchRandomSearch.R:2:3'): TunerRandomSearch ────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─global test_tuner("random_search") at test_TunerBatchRandomSearch.R:2:3 2. └─tuner$optimize(inst) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TunerInternal.R:18:3'): tuner internal works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TunerInternal.R:18:3 2. └─mlr3tuning:::.__TunerBatch__optimize(...) 3. └─bbotk::optimize_batch_default(inst, self) 4. ├─base::tryCatch(...) 5. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 6. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 8. └─get_private(optimizer)$.optimize(instance) 9. └─mlr3tuning:::.__TunerBatchInternal__.optimize(...) 10. └─inst$eval_batch(data.table()) 11. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 12. └─self$objective$eval_many(list(list())) 13. └─bbotk:::.__Objective__eval_many(...) 14. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 15. │ └─base::eval.parent(expr, n = 1L) 16. │ └─base::eval(expr, p) 17. │ └─base::eval(expr, p) 18. └─private$.eval_many(xss = xss, resampling = `<list>`) 19. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 20. └─mlr3::benchmark(...) 21. └─ResultData$new(grid, data_extra, store_backends = store_backends) 22. └─mlr3 (local) initialize(...) 23. └─mlr3:::.__ResultData__initialize(...) 24. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 25. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:19:3'): tuning with multiple objectives ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchMultiCrit.R:19:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:35:3'): store_benchmark_result and store_models flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchMultiCrit.R:35:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:64:3'): check_values flag with parameter set dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchMultiCrit.R:64:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:114:3'): TuneToken and result_learner_param_vals works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchMultiCrit.R:114:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:122:3'): TuningInstanceBatchMultiCrit and empty search space works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TuningInstanceBatchMultiCrit.R:122:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(list(list())) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchMultiCrit.R:186:3'): Batch multi-crit internal tuning works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), min.rows = 1) at test_TuningInstanceBatchMultiCrit.R:186:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:9:3'): TuningInstanceBatchSingleCrit ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchSingleCrit.R:9:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:46:3'): archive one row (#40) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(data.table(cp = 0.1)) at test_TuningInstanceBatchSingleCrit.R:46:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:55:3'): eval_batch and termination ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(design[1:2, ]) at test_TuningInstanceBatchSingleCrit.R:55:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:76:3'): the same experiment can be added twice ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(d) at test_TuningInstanceBatchSingleCrit.R:76:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:99:3'): tuning with custom resampling ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:99:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:128:3'): non-scalar hyperpars (#201) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tnr("random_search")$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:128:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:136:3'): store_benchmark_result and store_models flag works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─inst$eval_batch(...) at test_TuningInstanceBatchSingleCrit.R:136:3 2. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 3. └─self$objective$eval_many(xss_trafoed) 4. └─bbotk:::.__Objective__eval_many(...) 5. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 6. │ └─base::eval.parent(expr, n = 1L) 7. │ └─base::eval(expr, p) 8. │ └─base::eval(expr, p) 9. └─private$.eval_many(xss = xss, resampling = `<list>`) 10. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 11. └─mlr3::benchmark(...) 12. └─ResultData$new(grid, data_extra, store_backends = store_backends) 13. └─mlr3 (local) initialize(...) 14. └─mlr3:::.__ResultData__initialize(...) 15. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 16. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:170:3'): check_values flag with parameter set dependencies ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_TuningInstanceBatchSingleCrit.R:170:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:220:3'): TuneToken and result_learner_param_vals works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchSingleCrit.R:220:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:230:3'): TuningInstanceBatchSingleCrit and empty search space works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_TuningInstanceBatchSingleCrit.R:230:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(list(list())) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:413:3'): objective contains no benchmark results ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) at test_TuningInstanceBatchSingleCrit.R:413:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(list(list())) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:422:3'): dependencies in defaults work ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_class(...) at test_TuningInstanceBatchSingleCrit.R:422:3 2. │ └─checkmate::checkClass(x, classes, ordered, null.ok) 3. └─mlr3tuning::tune(...) 4. └─tuner$optimize(instance) 5. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 6. └─private$.optimizer$optimize(inst) 7. └─bbotk:::.__OptimizerBatch__optimize(...) 8. └─bbotk::optimize_batch_default(inst, self) 9. ├─base::tryCatch(...) 10. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 11. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 12. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 13. └─get_private(optimizer)$.optimize(instance) 14. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 15. └─inst$eval_batch(design$data) 16. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 17. └─self$objective$eval_many(xss_trafoed) 18. └─bbotk:::.__Objective__eval_many(...) 19. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 20. │ └─base::eval.parent(expr, n = 1L) 21. │ └─base::eval(expr, p) 22. │ └─base::eval(expr, p) 23. └─private$.eval_many(xss = xss, resampling = `<list>`) 24. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 25. └─mlr3::benchmark(...) 26. └─ResultData$new(grid, data_extra, store_backends = store_backends) 27. └─mlr3 (local) initialize(...) 28. └─mlr3:::.__ResultData__initialize(...) 29. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 30. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceBatchSingleCrit.R:459:3'): Batch single-crit internal tuning works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─checkmate::expect_data_table(tuner$optimize(instance), nrows = 1) at test_TuningInstanceBatchSingleCrit.R:459:3 2. │ └─checkmate::checkDataTable(...) 3. └─tuner$optimize(instance) 4. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 5. └─private$.optimizer$optimize(inst) 6. └─bbotk:::.__OptimizerBatch__optimize(...) 7. └─bbotk::optimize_batch_default(inst, self) 8. ├─base::tryCatch(...) 9. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 10. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 11. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 12. └─get_private(optimizer)$.optimize(instance) 13. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 14. └─inst$eval_batch(design$data) 15. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 16. └─self$objective$eval_many(xss_trafoed) 17. └─bbotk:::.__Objective__eval_many(...) 18. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 19. │ └─base::eval.parent(expr, n = 1L) 20. │ └─base::eval(expr, p) 21. │ └─base::eval(expr, p) 22. └─private$.eval_many(xss = xss, resampling = `<list>`) 23. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 24. └─mlr3::benchmark(...) 25. └─ResultData$new(grid, data_extra, store_backends = store_backends) 26. └─mlr3 (local) initialize(...) 27. └─mlr3:::.__ResultData__initialize(...) 28. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 29. └─data.table:::`[.data.table`(...) ── Failure ('test_TuningInstanceBatchSingleCrit.R:478:3'): required parameter can be tuned internally without having a value set ── Expected `tune(...)` not to throw any errors. Actually got a <simpleError> with message: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─testthat::expect_error(...) at test_TuningInstanceBatchSingleCrit.R:478:3 2. │ └─testthat:::expect_condition_matching_(...) 3. │ └─testthat:::quasi_capture(...) 4. │ ├─testthat (local) .capture(...) 5. │ │ └─base::withCallingHandlers(...) 6. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 7. └─mlr3tuning::tune(...) 8. └─tuner$optimize(instance) 9. └─mlr3tuning:::.__TunerBatch__optimize(...) 10. └─bbotk::optimize_batch_default(inst, self) 11. ├─base::tryCatch(...) 12. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 13. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 14. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 15. └─get_private(optimizer)$.optimize(instance) 16. └─mlr3tuning:::.__TunerBatchInternal__.optimize(...) 17. └─inst$eval_batch(data.table()) 18. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 19. └─self$objective$eval_many(list(list())) 20. └─bbotk:::.__Objective__eval_many(...) 21. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 22. │ └─base::eval.parent(expr, n = 1L) 23. │ └─base::eval(expr, p) 24. │ └─base::eval(expr, p) 25. └─private$.eval_many(xss = xss, resampling = `<list>`) 26. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 27. └─mlr3::benchmark(...) 28. └─ResultData$new(grid, data_extra, store_backends = store_backends) 29. └─mlr3 (local) initialize(...) 30. └─mlr3:::.__ResultData__initialize(...) 31. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 32. └─data.table:::`[.data.table`(...) ── Error ('test_error_handling.R:18:3'): failing learner ─────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tt$optimize(instance) at test_error_handling.R:18:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_error_handling.R:36:3'): predictions missing ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. ├─mlr3tuning:::expect_resample_error(tt$optimize(instance), "missing") at test_error_handling.R:36:3 2. │ ├─base::withCallingHandlers(...) at ./helper.R:26:3 3. │ └─testthat::expect_error(...) 4. │ └─testthat:::expect_condition_matching_(...) 5. │ └─testthat:::quasi_capture(...) 6. │ ├─testthat (local) .capture(...) 7. │ │ └─base::withCallingHandlers(...) 8. │ └─rlang::eval_bare(quo_get_expr(.quo), quo_get_env(.quo)) 9. └─tt$optimize(instance) 10. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 11. └─private$.optimizer$optimize(inst) 12. └─bbotk:::.__OptimizerBatch__optimize(...) 13. └─bbotk::optimize_batch_default(inst, self) 14. ├─base::tryCatch(...) 15. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 16. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 17. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 18. └─get_private(optimizer)$.optimize(instance) 19. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 20. └─inst$eval_batch(design$data) 21. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 22. └─self$objective$eval_many(xss_trafoed) 23. └─bbotk:::.__Objective__eval_many(...) 24. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 25. │ └─base::eval.parent(expr, n = 1L) 26. │ └─base::eval(expr, p) 27. │ └─base::eval(expr, p) 28. └─private$.eval_many(xss = xss, resampling = `<list>`) 29. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 30. └─mlr3::benchmark(...) 31. └─ResultData$new(grid, data_extra, store_backends = store_backends) 32. └─mlr3 (local) initialize(...) 33. └─mlr3:::.__ResultData__initialize(...) 34. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 35. └─data.table:::`[.data.table`(...) ── Error ('test_extract_inner_tuning_archives.R:11:3'): extract_inner_tuning_archives function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_archives.R:11:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_archives.R:131:3'): works with internal tuning ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(...) at test_extract_inner_tuning_archives.R:131:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_results.R:11:3'): extract_inner_tuning_results function works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_results.R:11:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_extract_inner_tuning_results.R:131:3'): extract_inner_tuning_results returns tuning_instance ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(tsk("penguins"), at, resampling_outer, store_models = TRUE) at test_extract_inner_tuning_results.R:131:3 2. └─mlr3:::future_map(...) 3. └─future.apply::future_mapply(...) 4. └─future.apply:::future_xapply(...) 5. └─base::tryCatch(...) 6. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 7. └─base (local) tryCatchOne(...) 8. └─value[[3L]](cond) 9. └─future.apply:::onError(e, futures = fs, debug = debug) ── Error ('test_mlr_callbacks.R:6:3'): backup callback works ─────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:6:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:23:3'): backup callback works with standalone tuner ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:23:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 13. └─inst$eval_batch(g$data[inds]) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:282:3'): batch default configuration callback works ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:282:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:299:3'): batch default configuration callback works with logscale ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:299:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:332:3'): batch default configuration callback works without transformation and with logscale ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:332:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. └─mlr3misc::call_back(...) 8. └─mlr3misc::walk(...) 9. └─mlr3misc (local) .f(.xi, ...) 10. └─callback$call(stage, context) 11. └─self[[stage]](self, context) 12. └─context$instance$eval_batch(xdt) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_mlr_callbacks.R:437:3'): one se rule callback works ──────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_mlr_callbacks.R:437:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_trafos.R:10:3'): simple exp trafo works ──────────────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_trafos.R:10:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchDesignPoints__.optimize(...) 12. └─instance$eval_batch(design[inds, ]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_trafos.R:34:3'): trafo where param names change ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(inst) at test_trafos.R:34:3 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchGridSearch__.optimize(...) 12. └─inst$eval_batch(g$data[inds]) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:3:3'): tune function works with one measure ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:3:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:13:3'): tune function works with multiple measures ────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:13:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune.R:23:3'): tune function works without measure ───────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune(...) at test_tune.R:23:3 2. └─tuner$optimize(instance) 3. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 4. └─private$.optimizer$optimize(inst) 5. └─bbotk:::.__OptimizerBatch__optimize(...) 6. └─bbotk::optimize_batch_default(inst, self) 7. ├─base::tryCatch(...) 8. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 9. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 11. └─get_private(optimizer)$.optimize(instance) 12. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 13. └─inst$eval_batch(design$data) 14. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 15. └─self$objective$eval_many(xss_trafoed) 16. └─bbotk:::.__Objective__eval_many(...) 17. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 18. │ └─base::eval.parent(expr, n = 1L) 19. │ └─base::eval(expr, p) 20. │ └─base::eval(expr, p) 21. └─private$.eval_many(xss = xss, resampling = `<list>`) 22. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 23. └─mlr3::benchmark(...) 24. └─ResultData$new(grid, data_extra, store_backends = store_backends) 25. └─mlr3 (local) initialize(...) 26. └─mlr3:::.__ResultData__initialize(...) 27. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 28. └─data.table:::`[.data.table`(...) ── Error ('test_tune_nested.R:5:3'): tune_nested function works ──────────────── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3tuning::tune_nested(...) at test_tune_nested.R:5:3 2. └─mlr3::resample(task, at, outer_resampling, store_models = TRUE) 3. └─mlr3:::future_map(...) 4. └─future.apply::future_mapply(...) 5. └─future.apply:::future_xapply(...) 6. └─base::tryCatch(...) 7. └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. └─base (local) tryCatchOne(...) 9. └─value[[3L]](cond) 10. └─future.apply:::onError(e, futures = fs, debug = debug) [ FAIL 113 | WARN 9 | SKIP 68 | PASS 192 ] Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 1.5.0
Check: examples
Result: ERROR Running examples in ‘mlr3tuning-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: mlr_tuners_internal > ### Title: Hyperparameter Tuning with Internal Tuning > ### Aliases: mlr_tuners_internal TunerBatchInternal > > ### ** Examples > > ## Don't show: > if (mlr3misc::require_namespaces(c("mlr3learners", "xgboost"), quietly = TRUE)) withAutoprint({ # examplesIf + ## End(Don't show) + library(mlr3learners) + + # Retrieve task + task = tsk("pima") + + # Load learner and set search space + learner = lrn("classif.xgboost", + nrounds = to_tune(upper = 1000, internal = TRUE), + early_stopping_rounds = 10, + validate = "test", + eval_metric = "merror" + ) + + # Internal hyperparameter tuning on the pima indians diabetes data set + instance = tune( + tnr("internal"), + tsk("iris"), + learner, + rsmp("cv", folds = 3), + msr("internal_valid_score", minimize = TRUE, select = "merror") + ) + + # best performing hyperparameter configuration + instance$result_learner_param_vals + + instance$result_learner_param_vals$internal_tuned_values + ## Don't show: + }) # examplesIf > library(mlr3learners) > task = tsk("pima") > learner = lrn("classif.xgboost", nrounds = to_tune(upper = 1000, internal = TRUE), + early_stopping_rounds = 10, validate = "test", eval_metric = "merror") > instance = tune(tnr("internal"), tsk("iris"), learner, rsmp("cv", folds = 3), + msr("internal_valid_score", minimize = TRUE, select = "merror")) INFO [16:06:08.310] [bbotk] Starting to optimize 0 parameter(s) with '<TunerBatchInternal>' and '<TerminatorNone>' INFO [16:06:08.317] [bbotk] Evaluating 1 configuration(s) INFO [16:06:08.343] [mlr3] Running benchmark with 3 resampling iterations INFO [16:06:08.388] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 1/3) INFO [16:06:08.491] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 2/3) INFO [16:06:08.580] [mlr3] Applying learner 'classif.xgboost' on task 'iris' (iter 3/3) Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: eval_metric, nthread, num_class. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in throw_err_or_depr_msg("Parameter '", match_old, "' has been renamed to '", : Parameter 'watchlist' has been renamed to 'evals'. This warning will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: eval_metric, nthread, num_class. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in throw_err_or_depr_msg("Parameter '", match_old, "' has been renamed to '", : Parameter 'watchlist' has been renamed to 'evals'. This warning will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: eval_metric, nthread, num_class. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in throw_err_or_depr_msg("Parameter '", match_old, "' has been renamed to '", : Parameter 'watchlist' has been renamed to 'evals'. This warning will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning: Caught simpleError. Canceling all iterations ... Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: eval_metric, nthread, num_class. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in throw_err_or_depr_msg("Parameter '", match_old, "' has been renamed to '", : Parameter 'watchlist' has been renamed to 'evals'. This warning will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Warning in check.deprecation(deprecated_train_params, match.call(), ...) : Passed invalid function arguments: eval_metric, nthread, num_class. These should be passed as a list to argument 'params'. Conversion from argument to 'params' entry will be done automatically, but this behavior will become an error in a future version. Warning in throw_err_or_depr_msg("Parameter '", match_old, "' has been renamed to '", : Parameter 'watchlist' has been renamed to 'evals'. This warning will become an error in a future version. Warning in check.custom.obj(params, objective) : Argument 'objective' is only for custom objectives. For built-in objectives, pass the objective under 'params'. This warning will become an error in a future version. Error in names(x) <- nm : attempt to set an attribute on NULL Calls: withAutoprint ... tryCatchList -> tryCatchOne -> <Anonymous> -> onError Execution halted Examples with CPU (user + system) or elapsed time > 5s user system elapsed AutoTuner 6.623 0.329 7.717 mlr3tuning.one_se_rule 6.293 0.096 6.887 Flavor: r-release-linux-x86_64

Package mlr3tuningspaces

Current CRAN status: ERROR: 4, OK: 9

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘mlr3tuningspaces-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: TuningSpace > ### Title: Tuning Spaces > ### Aliases: TuningSpace > > ### ** Examples > > library(mlr3tuning) > > # Get default tuning space of rpart learner > tuning_space = lts("classif.rpart.default") > > # Set tuning space > learner = lrn("classif.rpart") > learner$param_set$values = tuning_space$values > > # Tune learner > instance = tune( + tnr("random_search"), + task = tsk("pima"), + learner = learner, + resampling = rsmp ("holdout"), + measure = msr("classif.ce"), + term_evals = 10) INFO [04:34:35.550] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerBatchRandomSearch>' and '<TerminatorEvals> [n_evals=10, k=0]' INFO [04:34:35.770] [bbotk] Evaluating 1 configuration(s) INFO [04:34:35.852] [mlr3] Running benchmark with 1 resampling iterations INFO [04:34:36.060] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [04:34:36.207] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: tune ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘mlr3tuningspaces-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: TuningSpace > ### Title: Tuning Spaces > ### Aliases: TuningSpace > > ### ** Examples > > library(mlr3tuning) > > # Get default tuning space of rpart learner > tuning_space = lts("classif.rpart.default") > > # Set tuning space > learner = lrn("classif.rpart") > learner$param_set$values = tuning_space$values > > # Tune learner > instance = tune( + tnr("random_search"), + task = tsk("pima"), + learner = learner, + resampling = rsmp ("holdout"), + measure = msr("classif.ce"), + term_evals = 10) INFO [17:17:47.934] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerBatchRandomSearch>' and '<TerminatorEvals> [n_evals=10, k=0]' INFO [17:17:48.029] [bbotk] Evaluating 1 configuration(s) INFO [17:17:48.089] [mlr3] Running benchmark with 1 resampling iterations INFO [17:17:48.179] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:17:48.237] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: tune ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘mlr3tuningspaces-Ex.R’ failed The error most likely occurred in: > ### Name: TuningSpace > ### Title: Tuning Spaces > ### Aliases: TuningSpace > > ### ** Examples > > library(mlr3tuning) > > # Get default tuning space of rpart learner > tuning_space = lts("classif.rpart.default") > > # Set tuning space > learner = lrn("classif.rpart") > learner$param_set$values = tuning_space$values > > # Tune learner > instance = tune( + tnr("random_search"), + task = tsk("pima"), + learner = learner, + resampling = rsmp ("holdout"), + measure = msr("classif.ce"), + term_evals = 10) INFO [17:50:56.812] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerBatchRandomSearch>' and '<TerminatorEvals> [n_evals=10, k=0]' INFO [17:50:57.095] [bbotk] Evaluating 1 configuration(s) INFO [17:50:57.169] [mlr3] Running benchmark with 1 resampling iterations INFO [17:50:57.569] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [17:50:57.816] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: tune ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.6.0
Check: examples
Result: ERROR Running examples in ‘mlr3tuningspaces-Ex.R’ failed The error most likely occurred in: > ### Name: TuningSpace > ### Title: Tuning Spaces > ### Aliases: TuningSpace > > ### ** Examples > > library(mlr3tuning) > > # Get default tuning space of rpart learner > tuning_space = lts("classif.rpart.default") > > # Set tuning space > learner = lrn("classif.rpart") > learner$param_set$values = tuning_space$values > > # Tune learner > instance = tune( + tnr("random_search"), + task = tsk("pima"), + learner = learner, + resampling = rsmp ("holdout"), + measure = msr("classif.ce"), + term_evals = 10) INFO [12:30:35.483] [bbotk] Starting to optimize 3 parameter(s) with '<OptimizerBatchRandomSearch>' and '<TerminatorEvals> [n_evals=10, k=0]' INFO [12:30:36.023] [bbotk] Evaluating 1 configuration(s) INFO [12:30:36.160] [mlr3] Running benchmark with 1 resampling iterations INFO [12:30:36.579] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/1) INFO [12:30:36.810] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: tune ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Package mlr3verse

Current CRAN status: NOTE: 3, OK: 10

Version: 0.3.1
Check: package dependencies
Result: NOTE Package suggested but not available for checking: ‘mlr3proba’ Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Package mlr3viz

Current CRAN status: ERROR: 4, NOTE: 3, OK: 6

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [04:35:29.782] [mlr3] Running benchmark with 40 resampling iterations INFO [04:35:30.057] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [04:35:30.141] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [04:35:30.179] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [04:35:30.238] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [04:35:30.311] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [04:35:30.410] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [04:35:30.446] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [04:35:30.630] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [04:35:30.664] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [04:35:30.699] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [04:35:30.850] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [04:35:30.918] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [04:35:30.962] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [04:35:31.178] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [04:35:31.243] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [04:35:31.350] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [04:35:31.465] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [04:35:31.564] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [04:35:31.962] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [04:35:32.017] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [04:35:32.064] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [04:35:32.109] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [04:35:32.161] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [04:35:32.240] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [04:35:32.274] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [04:35:32.317] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [04:35:32.351] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [04:35:32.421] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [04:35:32.472] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [04:35:32.551] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [04:35:32.585] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [04:35:32.649] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [04:35:32.752] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [04:35:32.821] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [04:35:32.890] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [04:35:32.951] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [04:35:33.016] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [04:35:33.077] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [04:35:33.139] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [04:35:33.214] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [04:35:33.296] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [79s/43s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_OptimInstanceSingleCrit.R: Loading required namespace: mlr3learners > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TuningInstanceSingleCrit.R: Loading required package: mlr3 Saving _problems/test_TuningInstanceSingleCrit-24.R Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R [ FAIL 7 | WARN 50 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClust.R:4:1', 'test_TaskRegr.R:3:1', 'test_TaskClassif.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 50 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [17:18:08.352] [mlr3] Running benchmark with 40 resampling iterations INFO [17:18:08.477] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [17:18:08.526] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [17:18:08.565] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [17:18:08.606] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [17:18:08.634] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [17:18:08.673] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [17:18:08.748] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [17:18:08.922] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [17:18:08.998] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [17:18:09.076] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [17:18:09.148] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [17:18:09.194] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [17:18:09.223] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [17:18:09.258] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [17:18:09.303] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [17:18:09.335] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [17:18:09.373] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [17:18:09.403] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [17:18:09.740] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [17:18:09.767] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [17:18:09.815] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [17:18:09.903] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [17:18:09.982] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [17:18:10.064] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [17:18:10.141] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [17:18:10.189] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [17:18:10.240] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [17:18:10.282] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [17:18:10.326] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [17:18:10.354] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [17:18:10.393] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [17:18:10.439] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [17:18:10.481] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [17:18:10.519] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [17:18:10.555] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [17:18:10.614] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [17:18:10.685] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [17:18:10.755] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [17:18:10.835] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [17:18:10.925] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [17:18:11.022] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [53s/28s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TuningInstanceSingleCrit.R: Loading required package: mlr3 Saving _problems/test_TuningInstanceSingleCrit-24.R Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClust.R:4:1', 'test_TaskRegr.R:3:1', 'test_TaskClassif.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [17:51:57.263] [mlr3] Running benchmark with 40 resampling iterations INFO [17:51:57.821] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [17:51:57.953] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [17:51:58.076] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [17:51:58.179] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [17:51:58.309] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [17:51:58.448] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [17:51:58.507] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [17:51:58.804] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [17:51:58.930] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [17:51:59.030] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [17:51:59.192] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [17:51:59.447] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [17:51:59.647] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [17:51:59.849] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [17:52:00.014] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [17:52:00.145] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [17:52:00.297] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [17:52:00.466] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [17:52:00.820] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [17:52:00.884] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [17:52:00.993] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [17:52:01.140] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [17:52:01.221] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [17:52:01.333] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [17:52:01.479] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [17:52:01.608] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [17:52:01.706] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [17:52:01.762] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [17:52:01.841] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [17:52:01.893] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [17:52:02.004] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [17:52:02.238] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [17:52:02.496] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [17:52:02.664] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [17:52:02.761] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [17:52:02.961] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [17:52:03.170] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [17:52:03.374] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [17:52:03.579] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [17:52:03.825] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [17:52:03.987] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [135s/127s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TuningInstanceSingleCrit.R: Loading required package: paradox Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R Saving _problems/test_TuningInstanceSingleCrit-24.R [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClust.R:4:1', 'test_TaskClassif.R:3:1', 'test_TaskRegr.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [12:31:59.527] [mlr3] Running benchmark with 40 resampling iterations INFO [12:31:59.933] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [12:32:00.106] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [12:32:00.197] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [12:32:00.328] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [12:32:00.477] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [12:32:00.571] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [12:32:00.664] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [12:32:00.860] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [12:32:00.907] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [12:32:00.952] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [12:32:01.041] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [12:32:01.160] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [12:32:01.285] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [12:32:01.365] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [12:32:01.513] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [12:32:01.637] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [12:32:01.802] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [12:32:01.922] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [12:32:02.520] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [12:32:02.613] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [12:32:02.682] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [12:32:02.770] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [12:32:02.847] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [12:32:02.982] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [12:32:03.091] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [12:32:03.177] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [12:32:03.324] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [12:32:03.427] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [12:32:03.556] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [12:32:03.638] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [12:32:03.783] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [12:32:04.022] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [12:32:04.202] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [12:32:04.418] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [12:32:04.603] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [12:32:04.808] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [12:32:04.951] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [12:32:05.076] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [12:32:05.254] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [12:32:05.447] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [12:32:05.667] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [127s/112s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TuningInstanceSingleCrit.R: Loading required package: mlr3 Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R Saving _problems/test_TuningInstanceSingleCrit-24.R [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClassif.R:3:1', 'test_TaskClust.R:4:1', 'test_TaskRegr.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.10.1
Check: package dependencies
Result: NOTE Package suggested but not available for checking: ‘mlr3proba’ Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64

Package rush

Current CRAN status: OK: 13