| Title: | Functions to Streamline Statistical Analysis and Reporting |
| Version: | 0.0.1 |
| Description: | Built upon popular R packages such as 'ggstatsplot' and 'ARTool', this collection offers a wide array of tools for simplifying reproducible analyses, generating high-quality visualizations, and producing 'APA'-compliant outputs. The primary goal of this package is to significantly reduce repetitive coding efforts, allowing you to focus on interpreting results. Whether you're dealing with ANOVA assumptions, reporting effect sizes, or creating publication-ready visualizations, this package makes these tasks easier. |
| License: | MIT + file LICENSE |
| Encoding: | UTF-8 |
| RoxygenNote: | 7.3.3 |
| Depends: | R (≥ 4.5.0) |
| Imports: | ARTool, car, clipr, conflicted, dplyr (≥ 1.1.4), effectsize (≥ 1.0.1), FSA, ggplot2 (≥ 4.0.1), ggpmisc (≥ 0.6.3), ggsignif, ggstatsplot (≥ 0.13.4), ggtext, purrr, readxl, report (≥ 0.6.1), rlang, rstatix, see, stats, stringr, tidyr, utils, writexl, xtable |
| Suggests: | afex, BayesFactor, bayestestR, Cairo, dunn.test, DT, emmeans, emoa, flexdashboard, Hmisc, moocore (≥ 0.1.10), nparLD, psych, reporttools, rstantools, scales, sjPlot, stargazer, styler, tibble, testthat (≥ 3.3.0) |
| Config/testthat/edition: | 3 |
| NeedsCompilation: | no |
| Packaged: | 2025-12-15 11:14:44 UTC; Mark |
| Author: | Mark Colley |
| Maintainer: | Mark Colley <mark.colley@yahoo.de> |
| Repository: | CRAN |
| Date/Publication: | 2025-12-19 15:00:07 UTC |
Add Pareto EMOA Column to a Data Frame
Description
This function calculates the Pareto front for a given set of objectives in a data frame and adds a new column, PARETO_EMOA, which indicates whether each row in the data frame belongs to the Pareto front.
Usage
add_pareto_emoa_column(data, objectives)
Arguments
data |
A data frame containing the data, including the objective columns. |
objectives |
A character vector specifying the names of the objective columns in |
Value
A data frame with the same columns as data, along with an additional column, PARETO_EMOA, which is TRUE for rows that are on the Pareto front and FALSE otherwise.
Examples
# Define objective columns
objectives <- c("trust", "predictability", "perceivedSafety", "Comfort")
# Example data frame
main_df <- data.frame(
trust = runif(10),
predictability = runif(10),
perceivedSafety = runif(10),
Comfort = runif(10)
)
# Add the Pareto front column
main_df <- add_pareto_emoa_column(data = main_df, objectives)
head(main_df)
Check the assumptions for an ANOVA with a variable number of factors: Normality and Homogeneity of variance assumption.
Description
Check the assumptions for an ANOVA with a variable number of factors: Normality and Homogeneity of variance assumption.
Usage
checkAssumptionsForAnova(data, y, factors)
Arguments
data |
the data frame |
y |
The dependent variable for which assumptions should be checked |
factors |
A character vector of factor names |
Value
A message indicating whether to use parametric or non-parametric ANOVA
Examples
set.seed(123)
main_df <- data.frame(
tlx_mental = rnorm(40),
Video = factor(rep(c("A", "B"), each = 20)),
DriverPosition = factor(rep(c("Left", "Right"), times = 20))
)
checkAssumptionsForAnova(
data = main_df,
y = "tlx_mental",
factors = c("Video", "DriverPosition")
)
Check homogeneity of variances across groups
Description
Check homogeneity of variances across groups
Usage
check_homogeneity_by_group(data, x, y)
Arguments
data |
the data frame |
x |
the grouping variable (column name as string) |
y |
the dependent variable (column name as string) |
Value
TRUE if Levene's test is non-significant (p >= .05), FALSE otherwise
Check normality for groups
Description
Check normality for groups
Usage
check_normality_by_group(data, x, y)
Arguments
data |
the data frame |
x |
the x column |
y |
the y column |
Value
TRUE if all groups are normal, FALSE otherwise
Configure Global R Environment for colleyRstats
Description
Sets ggplot2 themes and conflict preferences to match the standards used in the colleyRstats workflow.
Usage
colleyRstats_setup(
set_options = TRUE,
set_theme = TRUE,
set_conflicts = TRUE,
print_citation = TRUE,
verbose = TRUE
)
Arguments
set_options |
Logical. If |
set_theme |
Logical. If |
set_conflicts |
Logical. If |
print_citation |
Logical. If |
verbose |
Logical. If |
Value
Invisibly returns NULL.
Examples
# Runs everywhere, no extra packages, no session side effects
colleyRstats::colleyRstats_setup(
set_options = FALSE,
set_theme = FALSE,
set_conflicts = FALSE,
print_citation = FALSE,
verbose = FALSE
)
# Full setup (requires suggested packages; changes session defaults)
if (requireNamespace("ggplot2", quietly = TRUE) &&
requireNamespace("see", quietly = TRUE)) {
local({
old_theme <- ggplot2::theme_get()
on.exit(ggplot2::theme_set(old_theme), add = TRUE)
colleyRstats::colleyRstats_setup(
set_options = FALSE,
set_conflicts = FALSE, # avoid persisting conflict prefs in checks
print_citation = FALSE,
verbose = TRUE
)
ggplot2::ggplot(mtcars, ggplot2::aes(mpg, wt)) +
ggplot2::geom_point()
})
}
Replace values across a data frame
Description
Replace all occurrences of given values in all columns of a data frame.
The data data frame contains a collection of records, with attributes organized in columns. It may include various types of values, such as numerical, categorical, or textual data.
Usage
replace_values(data, to_replace, replace_with)
Arguments
data |
The input data frame to be modified. |
to_replace |
A vector of values to be replaced within the data frame. This must be the same length as |
replace_with |
A vector of corresponding replacement values. This must be the same length as |
Value
Modified data frame with specified values replaced.
Examples
data <- data.frame(
q1 = c("neg2", "neg1", "0"),
q2 = c("1", "neg2", "neg1")
)
replace_values(
data,
to_replace = c("neg2", "neg1"),
replace_with = c("-2", "-1")
)
Debug contrast errors in ANOVA-like models
Description
Debug contrast errors in ANOVA-like models
Usage
debug_contr_error(dat, subset_vec = NULL)
Arguments
dat |
A data frame of predictors. |
subset_vec |
Optional logical or numeric index vector used to subset rows before checks. |
Value
A list with two elements:
- nlevels
Integer vector giving the number of levels for each factor variable in
dat.- levels
List of factor level labels for each factor variable in
dat.
Examples
dat <- data.frame(
group = factor(rep(letters[1:3], each = 3)),
score = rnorm(9)
)
debug_contr_error(dat = dat)
Function to define a plot, either showing the main or interaction effect in bold.
Description
Function to define a plot, either showing the main or interaction effect in bold.
Usage
generateEffectPlot(
data,
x,
y,
fillColourGroup,
ytext = "testylab",
xtext = "testxlab",
legendPos = c(0.1, 0.23),
legendHeading = NULL,
shownEffect = "main",
effectLegend = FALSE,
effectDescription = NULL,
xLabelsOverwrite = NULL,
useLatexMarkup = FALSE,
numberColors = 6
)
Arguments
data |
the data frame |
x |
factor shown on the x-axis |
y |
dependent variable |
fillColourGroup |
group to color |
ytext |
label for y-axis |
xtext |
label for x-axis |
legendPos |
position for legend |
legendHeading |
custom heading for legend |
shownEffect |
either "main" or "interaction" |
effectLegend |
TRUE: show legend for effect (Default: FALSE) |
effectDescription |
custom label for effect |
xLabelsOverwrite |
custom labels for x-axis |
useLatexMarkup |
use latex font and markup |
numberColors |
number of colors |
Value
a plot
Examples
set.seed(123)
main_df <- data.frame(
strategy = factor(rep(c("A", "B"), each = 20)),
Emotion = factor(rep(c("Happy", "Sad"), times = 20)),
trust_mean = rnorm(40, mean = 5, sd = 1)
)
generateEffectPlot(
data = main_df,
x = "strategy",
y = "trust_mean",
fillColourGroup = "Emotion",
ytext = "Trust",
xtext = "Strategy",
legendPos = c(0.1, 0.23)
)
Generate a Multi-objective Optimization Plot
Description
This function generates a multi-objective optimization plot using ggplot2. The plot visualizes the relationship between the x and y variables, grouping and coloring by a fill variable, with the option to customize legend position, labels, and annotation of sampling and optimization phases.
Usage
generateMoboPlot(
data,
x,
y,
fillColourGroup = "ConditionID",
ytext,
legendPos = c(0.65, 0.85),
numberSamplingSteps = 5,
labelPosFormulaY = "top",
verticalLinePosY = 0.75
)
Arguments
data |
A data frame containing the data to be plotted. |
x |
A string representing the column name in |
y |
A string representing the column name in |
fillColourGroup |
A string representing the column name in |
ytext |
A custom label for the y-axis. If not provided, the y-axis label will be the title-cased version of |
legendPos |
A numeric vector of length 2 specifying the position of the legend inside the plot. Default is |
numberSamplingSteps |
An integer specifying the number of initial sampling steps before the optimization phase begins. Default is 5. |
labelPosFormulaY |
A string specifying the vertical position of the polynomial equation label in the plot. Acceptable values are |
verticalLinePosY |
A numeric value of the y-coordinate where the "sampling" and "optimizatin" line should be drawn. |
Value
A ggplot object representing the multi-objective optimization plot, ready to be rendered.
Examples
library(ggplot2)
library(ggpmisc)
# Example with numeric x-axis
df <- data.frame(
x = 1:20,
y = rnorm(20),
ConditionID = rep(c("A", "B"), 10)
)
generateMoboPlot(df, x = "x", y = "y")
# Example with factor x-axis
df <- data.frame(
x = factor(rep(1:5, each = 4)),
y = rnorm(20),
ConditionID = rep(c("A", "B"), 10)
)
generateMoboPlot(df, x = "x", y = "y", numberSamplingSteps = 3)
Generate a Multi-objective Optimization Plot
Description
This function generates a multi-objective optimization plot using ggplot2. The plot visualizes the relationship between the x and y variables, grouping and coloring by a fill variable, with the option to customize legend position, labels, and annotation of sampling and optimization phases.
Appropriate if you use https://github.com/Pascal-Jansen/Bayesian-Optimization-for-Unity in version 1.1.0 or higher.
Usage
generateMoboPlot2(
data,
x = "Iteration",
y,
phaseCol = "Phase",
fillColourGroup = "",
ytext,
legendPos = c(0.65, 0.85),
labelPosFormulaY = "top",
verticalLinePosY = 0.75
)
Arguments
data |
A data frame containing the data to be plotted. |
x |
A string representing the column name in |
y |
A string representing the column name in |
phaseCol |
the name of the column for the color of the phase (sampling or optimization) |
fillColourGroup |
A string representing the column name in |
ytext |
A custom label for the y-axis. If not provided, the y-axis label will be the title-cased version of |
legendPos |
A numeric vector of length 2 specifying the position of the legend inside the plot. Default is |
labelPosFormulaY |
A string specifying the vertical position of the polynomial equation label in the plot. Acceptable values are |
verticalLinePosY |
A numeric value of the y-coordinate where the "sampling" and "optimization" line should be drawn. |
Value
A ggplot object representing the multi-objective optimization plot, ready to be rendered.
Examples
library(ggplot2)
library(ggpmisc)
# Example with numeric x-axis
df <- data.frame(
x = 1:20,
y = rnorm(20),
ConditionID = rep(c("A", "B"), 10),
Phase = rep(c("Sampling", "Optimization"), 10)
)
generateMoboPlot2(data = df, x = "x", y = "y")
Check the data's distribution. If non-normal, take the non-parametric variant of ggbetweenstats. x and y have to be in parentheses, e.g., "ConditionID".
Description
Check the data's distribution. If non-normal, take the non-parametric variant of ggbetweenstats. x and y have to be in parentheses, e.g., "ConditionID".
Usage
ggbetweenstatsWithPriorNormalityCheck(
data,
x,
y,
ylab,
xlabels,
showPairwiseComp = TRUE,
plotType = "boxviolin"
)
Arguments
data |
the data frame |
x |
the independent variable, most likely "ConditionID" |
y |
the dependent variable under investigation |
ylab |
label to be shown for the dependent variable |
xlabels |
labels to be used for the x-axis |
showPairwiseComp |
whether to show pairwise comparisons, TRUE as default |
plotType |
either "box", "violin", or "boxviolin" (default) |
Value
A ggplot object produced by ggstatsplot::ggbetweenstats, which can be printed or further modified with +.
Examples
set.seed(123)
# Toy within-subject style data
main_df <- data.frame(
Participant = factor(rep(1:20, each = 3)),
CondID = factor(rep(c("A", "B", "C"), times = 20)),
tlx_mental = rnorm(60, mean = 50, sd = 10)
)
# Custom x-axis labels
labels_xlab <- c("Condition A", "Condition B", "Condition C")
ggbetweenstatsWithPriorNormalityCheck(
data = main_df,
x = "CondID",
y = "tlx_mental", ylab = "Mental Demand",
xlabels = labels_xlab,
showPairwiseComp = TRUE
)
Check the data's distribution. If non-normal, take the non-parametric variant of ggbetweenstats. x and y have to be in parentheses, e.g., "ConditionID".
Description
Check the data's distribution. If non-normal, take the non-parametric variant of ggbetweenstats. x and y have to be in parentheses, e.g., "ConditionID".
Usage
ggbetweenstatsWithPriorNormalityCheckAsterisk(
data,
x,
y,
ylab,
xlabels,
plotType = "boxviolin"
)
Arguments
data |
the data frame |
x |
the independent variable, most likely "ConditionID" |
y |
the dependent variable under investigation |
ylab |
label to be shown for the dependent variable |
xlabels |
labels to be used for the x-axis |
plotType |
either "box", "violin", or "boxviolin" (default) |
Value
A ggplot object produced by ggstatsplot::ggbetweenstats
with additional significance annotations, which can be printed or modified.
Examples
set.seed(123)
# Toy within-subject style data
main_df <- data.frame(
Participant = factor(rep(1:20, each = 3)),
CondID = factor(rep(c("A", "B", "C"), times = 20)),
tlx_mental = rnorm(60, mean = 50, sd = 10)
)
# Custom x-axis labels
labels_xlab <- c("Condition A", "Condition B", "Condition C")
ggbetweenstatsWithPriorNormalityCheckAsterisk(
data = main_df,
x = "CondID", y = "tlx_mental", ylab = "Mental Demand", xlabels = labels_xlab
)
Check the data's distribution. If non-normal, take the non-parametric variant of ggwithinstats. x and y have to be in parentheses, e.g., "ConditionID".
Description
Check the data's distribution. If non-normal, take the non-parametric variant of ggwithinstats. x and y have to be in parentheses, e.g., "ConditionID".
Usage
ggwithinstatsWithPriorNormalityCheck(
data,
x,
y,
ylab,
xlabels = NULL,
showPairwiseComp = TRUE,
plotType = "boxviolin"
)
Arguments
data |
the data frame |
x |
the independent variable, most likely "ConditionID" |
y |
the dependent variable under investigation |
ylab |
label to be shown for the dependent variable |
xlabels |
labels to be used for the x-axis |
showPairwiseComp |
whether to show pairwise comparisons, TRUE as default |
plotType |
either "box", "violin", or "boxviolin" (default) |
Value
A ggplot object produced by ggstatsplot::ggwithinstats with additional significance annotations, which can be printed or modified.
Examples
#' set.seed(123)
# Toy within-subject style data
main_df <- data.frame(
Participant = factor(rep(1:20, each = 3)),
CondID = factor(rep(c("A", "B", "C"), times = 20)),
tlx_mental = rnorm(60, mean = 50, sd = 10)
)
# Custom x-axis labels
labels_xlab <- c("Condition A", "Condition B", "Condition C")
ggwithinstatsWithPriorNormalityCheck(
data = main_df,
x = "CondID", y = "tlx_mental",
ylab = "Mental Demand",
xlabels = labels_xlab,
showPairwiseComp = TRUE
)
Check the data's distribution. If non-normal, take the non-parametric variant of ggwithinstats. x and y have to be in parentheses, e.g., "ConditionID". Add Astersiks instead of p-values.
Description
Check the data's distribution. If non-normal, take the non-parametric variant of ggwithinstats. x and y have to be in parentheses, e.g., "ConditionID". Add Astersiks instead of p-values.
Usage
ggwithinstatsWithPriorNormalityCheckAsterisk(
data,
x,
y,
ylab,
xlabels,
plotType = "boxviolin"
)
Arguments
data |
the data frame |
x |
the independent variable, most likely "ConditionID" |
y |
the dependent variable under investigation |
ylab |
label to be shown for the dependent variable |
xlabels |
labels to be used for the x-axis |
plotType |
either "box", "violin", or "boxviolin" (default) |
Value
A ggplot object produced by ggstatsplot::ggwithinstats
with additional significance annotations, which can be printed or modified.
Examples
set.seed(123)
# Toy within-subject style data
main_df <- data.frame(
Participant = factor(rep(1:20, each = 3)),
CondID = factor(rep(c("A", "B", "C"), times = 20)),
tlx_mental = rnorm(60, mean = 50, sd = 10)
)
# Custom x-axis labels
labels_xlab <- c("Condition A", "Condition B", "Condition C")
ggwithinstatsWithPriorNormalityCheckAsterisk(
data = main_df,
x = "CondID", y = "tlx_mental",
ylab = "Mental Demand", xlabels = labels_xlab
)
Transform text from report::report() into LaTeX-friendly output.
Description
This function transforms the text output from report::report() by performing several substitutions
to prepare the text for LaTeX typesetting. In particular, it replaces instances of R2, %, and ~ with
the corresponding LaTeX code. Additionally, it provides options to:
Omit bullet items marked as "non-significant" (when
only_sig = TRUE).Remove a concluding note about standardized parameters (when
remove_std = TRUE).Wrap bullet items in a LaTeX
itemizeenvironment or leave them as plain text (controlled byitemize).
Usage
latexify_report(
x,
print_result = TRUE,
only_sig = FALSE,
remove_std = FALSE,
itemize = TRUE
)
Arguments
x |
Character vector or a single string containing the report text. |
print_result |
Logical. If |
only_sig |
Logical. If |
remove_std |
Logical. If |
itemize |
Logical. If |
Value
A single string with the LaTeX-friendly formatted report text.
Examples
if (requireNamespace("report", quietly = TRUE)) {
# Simple linear model on the iris dataset
model <- stats::lm(
Sepal.Length ~ Sepal.Width + Petal.Length,
data = datasets::iris
)
# Format the report output, showing only significant items, removing the
# standard note, and wrapping bullet items in an itemize environment.
latexify_report(
report::report(model),
only_sig = TRUE,
remove_std = TRUE,
itemize = TRUE
)
}
This function normalizes the values in a vector to the range [new_min, new_max] based on their original range [old_min, old_max].
Description
This function normalizes the values in a vector to the range [new_min, new_max] based on their original range [old_min, old_max].
Usage
normalize(x_vector, old_min, old_max, new_min, new_max)
Arguments
x_vector |
A numeric vector that you want to normalize. |
old_min |
The minimum value in the original scale of the data. |
old_max |
The maximum value in the original scale of the data. |
new_min |
The minimum value in the new scale to which you want to normalize the data. |
new_max |
The maximum value in the new scale to which you want to normalize the data. |
Value
A numeric vector with the normalized values.
Examples
normalize(c(1, 2, 3, 4, 5), 1, 5, 0, 1)
Ensure input is not empty
Description
Stops execution if x is NULL, empty, or contains only NAs.
Usage
not_empty(x, msg = "Input must not be empty.")
Arguments
x |
The object to check |
msg |
The error message to display |
Value
Invisible TRUE if valid.
Calculation based on Rosenthal's formula (1994). N stands for the number of measurements. Necessary command:
Description
Calculation based on Rosenthal's formula (1994). N stands for the number of measurements. Necessary command:
Usage
rFromNPAV(pvalue, N)
Arguments
pvalue |
p value |
N |
number of measurements in the experiment |
Value
Invisibly returns a list with components:
-
r: effect size as a numeric scalar. -
z: corresponding z-statistic. -
text: LaTeX-formatted character string that is also sent to the console.
Examples
rFromNPAV(0.02, N = 180)
Calculation based on Rosenthal's formula (1994). N stands for the number of measurements.
Description
Calculation based on Rosenthal's formula (1994). N stands for the number of measurements.
Usage
rFromWilcox(wilcoxModel, N)
Arguments
wilcoxModel |
the Wilcox model |
N |
number of measurements in the experiment |
Value
Invisibly returns a list with components:
-
r: effect size as a numeric scalar. -
z: corresponding z-statistic. -
text: character string that is also sent to the console.
Examples
set.seed(1)
d <- data.frame(
group = rep(c("A", "B"), each = 10),
value = rnorm(20)
)
w <- stats::wilcox.test(value ~ group, data = d, exact = FALSE)
rFromWilcox(w, N = nrow(d))
rFromWilcoxAdjusted
Description
rFromWilcoxAdjusted
Usage
rFromWilcoxAdjusted(wilcoxModel, N, adjustFactor)
Arguments
wilcoxModel |
the Wilcox model |
N |
number of measurements in the experiment |
adjustFactor |
ad adjustment factor |
Value
Invisibly returns a list with components:
-
r: adjusted effect size as a numeric scalar. -
z: adjusted z-statistic. -
text: character string that is also sent to the console.
Examples
set.seed(1)
d <- data.frame(
group = rep(c("A", "B"), each = 10),
value = rnorm(20)
)
w <- stats::wilcox.test(value ~ group, data = d, exact = FALSE)
rFromWilcoxAdjusted(w, N = nrow(d), adjustFactor = 2)
Remove outliers and calculate REI
Description
This function takes a data frame, optional header information, variables to consider, and a range for a Likert scale. It then calculates the Response Entropy Index (REI) and flags suspicious entries based on percentiles.
Usage
remove_outliers_REI(df, header = FALSE, variables = "", range = c(1, 5))
Arguments
df |
Data frame containing the data. |
header |
Logical indicating if the data frame has a header. Defaults to FALSE. |
variables |
Character string specifying which variables to consider, separated by commas. |
range |
Numeric vector specifying the range of the Likert scale. Defaults to c(1, 5). |
Details
For more information on the REI method, refer to: Response Entropy Index Method
Value
A data frame with calculated REI, percentile, and a 'Suspicious' flag.
Examples
df <- data.frame(var1 = c(1, 2, 3), var2 = c(2, 3, 4))
result <- remove_outliers_REI(df, TRUE, "var1,var2", c(1, 5))
Generate the Latex-text based on the ARTool (see https://github.com/mjskay/ARTool). The ART result must be piped into an anova(). Only significant main and interaction effects are reported. P-values are rounded for the third digit. Attention: Effect sizes are not calculated! Attention: the independent variables of the formula and the term specifying the participant must be factors (i.e., use as.factor()).
Description
To easily copy and paste the results to your manuscript, the following commands must be defined in Latex:
\newcommand{\F}[3]{$F({#1},{#2})={#3}$}
\newcommand{\p}{\textit{p=}}
\newcommand{\pminor}{\textit{p$<$}}
Usage
reportART(model, dv = "Testdependentvariable", write_to_clipboard = FALSE)
Arguments
model |
the model of the art |
dv |
the name of the dependent variable that should be reported |
write_to_clipboard |
whether to write to the clipboard |
Value
A message describing the statistical results.
Examples
if (requireNamespace("ARTool", quietly = TRUE)) {
set.seed(123)
main_df <- data.frame(
tlx_mental = stats::rnorm(80),
Video = factor(rep(c("A", "B"), each = 40)),
gesture = factor(rep(c("G1", "G2"), times = 40)),
eHMI = factor(rep(c("On", "Off"), times = 40)),
UserID = factor(rep(1:20, each = 4))
)
art_model <- ARTool::art(
tlx_mental ~ Video * gesture * eHMI +
Error(UserID / (gesture * eHMI)),
data = main_df
)
model_anova <- stats::anova(art_model)
reportART(model_anova, dv = "mental demand")
}
Report dunnTest as text. Required commands in LaTeX:
\newcommand{\padjminor}{\textit{p$_{adj}<$}}
\newcommand{\padj}{\textit{p$_{adj}$=}}
\newcommand{\rankbiserial}[1]{$r_{rb} = #1$}
Description
Report dunnTest as text. Required commands in LaTeX:
\newcommand{\padjminor}{\textit{p$_{adj}<$}}
\newcommand{\padj}{\textit{p$_{adj}$=}}
\newcommand{\rankbiserial}[1]{$r_{rb} = #1$}
Usage
reportDunnTest(d, data, iv = "testiv", dv = "testdv")
Arguments
d |
the dunn test object |
data |
the data frame |
iv |
independent variable |
dv |
dependent variable |
Value
A message describing the statistical results.
Examples
if (requireNamespace("FSA", quietly = TRUE)) {
# Use built-in iris data
data(iris)
# Dunn test on Sepal.Length by Species
d <- FSA::dunnTest(Sepal.Length ~ Species,
data = iris,
method = "holm"
)
# Report the Dunn test
reportDunnTest(d,
data = iris,
iv = "Species",
dv = "Sepal.Length"
)
}
report Dunn test as a table. Customizable with sensible defaults. Required commands in LaTeX:
\newcommand{\padjminor}{\textit{p$_{adj}<$}}
\newcommand{\padj}{\textit{p$_{adj}$=}}
\newcommand{\rankbiserial}[1]{$r_{rb} = #1$}
Description
report Dunn test as a table. Customizable with sensible defaults. Required commands in LaTeX:
\newcommand{\padjminor}{\textit{p$_{adj}<$}}
\newcommand{\padj}{\textit{p$_{adj}$=}}
\newcommand{\rankbiserial}[1]{$r_{rb} = #1$}
Usage
reportDunnTestTable(
d = NULL,
data,
iv = "testiv",
dv = "testdv",
orderByP = FALSE,
numberDigitsForPValue = 4,
latexSize = "small",
orderText = TRUE
)
Arguments
d |
the dunn test object |
data |
the data frame |
iv |
independent variable |
dv |
dependent variable |
orderByP |
whether to order by the p value |
numberDigitsForPValue |
the number of digits to show |
latexSize |
which size for the text |
orderText |
whether to order the text |
Value
A message describing the statistical results in a table.
Examples
if (requireNamespace("FSA", quietly = TRUE)) {
# Use built-in iris data
data(iris)
# Dunn test on Sepal.Length by Species
d <- FSA::dunnTest(Sepal.Length ~ Species,
data = iris,
method = "holm"
)
# Report the Dunn test
reportDunnTestTable(d,
data = iris,
iv = "Species",
dv = "Sepal.Length"
)
}
Report the mean and standard deviation of a dependent variable for all levels of an independent variable rounded to the 2nd digit.
Description
#' To easily copy and paste the results to your manuscript, the following commands must be defined in Latex:
\newcommand{\m}{\textit{M=}}
\newcommand{\sd}{\textit{SD=}}
Usage
reportMeanAndSD(data, iv = "testiv", dv = "testdv")
Arguments
data |
the data frame |
iv |
the independent variable |
dv |
the dependent variable |
Value
Mean and SD values
Examples
example_data <- data.frame(Condition = rep(c("A", "B", "C"),
each = 10), TLX1 = stats::rnorm(30))
reportMeanAndSD(example_data, iv = "Condition", dv = "TLX1")
Generate the Latex-text based on the NPAV by Lüpsen (see https://www.uni-koeln.de/~luepsen/R/). Only significant main and interaction effects are reported. P-values are rounded for the third digit and partial eta squared values are provided when possible. Attention: the independent variables of the formula and the term specifying the participant must be factors (i.e., use as.factor()).
Description
To easily copy and paste the results to your manuscript, the following commands must be defined in Latex:
\newcommand{\F}[3]{$F({#1},{#2})={#3}$}
\newcommand{\p}{\textit{p=}}
\newcommand{\pminor}{\textit{p$<$}}
Usage
reportNPAV(model, dv = "Testdependentvariable", write_to_clipboard = FALSE)
Arguments
model |
the model of the np.anova |
dv |
the name of the dependent variable that should be reported |
write_to_clipboard |
whether to write to the clipboard |
Value
A message describing the statistical results.
Examples
model <- data.frame(
Df = c(1, 1, 10),
`F value` = c(6.12, 5.01, NA),
`Pr(>F)` = c(0.033, 0.045, NA),
check.names = FALSE
)
rownames(model) <- c("Video", "gesture:eHMI", "Residuals")
reportNPAV(model, dv = "mental workload")
Report the model produced by nparLD. The model provided must be the model generated by the command 'nparLD' nparLD (see https://CRAN.R-project.org/package=nparLD).
Description
#' Only significant main and interaction effects are reported. P-values are rounded for the third digit and relative treatment effects (RTE) are included when available. Attention: the independent variables of the formula and the term specifying the participant must be factors (i.e., use as.factor()).
Usage
reportNparLD(model, dv = "Testdependentvariable", write_to_clipboard = FALSE)
Arguments
model |
the model |
dv |
the dependent variable |
write_to_clipboard |
whether to write to the clipboard |
Details
#' To easily copy and paste the results to your manuscript, the following commands must be defined in Latex:
\newcommand{\F}{\textit{F=}}
\newcommand{\p}{\textit{p=}}
\newcommand{\pminor}{\textit{p$<$}}
Value
A message describing the statistical results.
Examples
if (requireNamespace("nparLD", quietly = TRUE)) {
# Small toy data set for nparLD
set.seed(123)
example_data <- data.frame(
Subject = factor(rep(1:10, each = 3)),
Time = factor(rep(c("T1", "T2", "T3"), times = 10)),
TLX1 = stats::rnorm(30, mean = 50, sd = 10)
)
# Fit nparLD model
model <- nparLD::nparLD(
TLX1 ~ Time,
data = example_data,
subject = "Subject",
description = FALSE
)
# Report the nparLD result
reportNparLD(model, dv = "TLX1")
}
Report statistical details for ggstatsplot.
Description
Report statistical details for ggstatsplot.
Usage
reportggstatsplot(
p,
iv = "independent",
dv = "Testdependentvariable",
write_to_clipboard = FALSE
)
Arguments
p |
the object returned by ggwithinstats or ggbetweenstats |
iv |
the independent variable |
dv |
the dependent variable |
write_to_clipboard |
whether to write to the clipboard |
Value
A message describing the statistical results.
Examples
library(ggstatsplot)
library(dplyr)
# Generate a plot
plt <- ggbetweenstats(mtcars, am, mpg)
reportggstatsplot(plt, iv = "am", dv = "mpg")
Report significant post-hoc pairwise comparisons
Description
This function extracts significant pairwise comparisons from a ggstatsplot object,
calculates the mean and standard deviation for the groups involved using the raw data,
and prints LaTeX-formatted sentences reporting the results.
Usage
reportggstatsplotPostHoc(
data,
p,
iv = "testiv",
dv = "testdv",
label_mappings = NULL
)
Arguments
data |
A data frame containing the raw data used to generate the plot. |
p |
A |
iv |
Character string. The column name of the independent variable (grouping variable). |
dv |
Character string. The column name of the dependent variable. |
label_mappings |
Optional named list or vector. Used to rename factor levels in the output text
(e.g., |
Value
No return value. The function prints LaTeX-formatted text to the console.
LaTeX Requirements
To easily copy and paste the results to your manuscript, the following commands
(or similar) must be defined in your LaTeX preamble, as the function outputs
commands taking arguments (e.g., \m{value}):
\newcommand{\m}[1]{\textit{M}=#1}
\newcommand{\sd}[1]{\textit{SD}=#1}
\newcommand{\padj}[1]{$p_{adj}=#1$}
\newcommand{\padjminor}[1]{$p_{adj}<#1$}
Examples
library(ggstatsplot)
library(dplyr)
# Generate a plot
plt <- ggbetweenstats(mtcars, am, mpg)
# Report stats
reportggstatsplotPostHoc(
data = mtcars,
p = plt,
iv = "am",
dv = "mpg",
label_mappings = list("0" = "Automatic", "1" = "Manual")
)
Reshape Excel Data Based on Custom Markers and Include Custom ID Column
Description
This function takes an Excel file with data in a wide format and transforms it to a long format. It includes a customizable "ID" column in the first position and repeats it for each slice. The function identifies sections of columns between markers that start with a user-defined string (default is "videoinfo") and appends those sections under the first section, aligning by column index.
Usage
reshape_data(
input_filepath,
sheetName = "Results",
marker = "videoinfo",
id_col = "ID",
output_filepath
)
Arguments
input_filepath |
String, the file path of the input Excel file. |
sheetName |
String, the name of the sheet to read from the Excel file. Default is "Results". |
marker |
String, the string that identifies the start of a new section of columns. Default is "videoinfo". |
id_col |
String, the name of the column to use as the ID column. Default is "ID". |
output_filepath |
String, the file path for the output Excel file. |
Details
Relevant if you receive data in wide-format but cannot use built-in functionality due to naming (e.g., in LimeSurvey)
Attention, known bug: the ID column will first have only the IDs, this has to be fixed manually.
Value
None, writes the reshaped data to an Excel file specified by output_filepath.
Examples
if (requireNamespace(c("write_xlsx", "readxl"), quietly = TRUE)) {
tmp_in <- tempfile(fileext = ".xlsx")
tmp_out <- tempfile(fileext = ".xlsx")
# Minimal toy input that includes your required pieces:
# an ID column and something that contains the marker value.
toy <- data.frame(
ID = c(1, 1, 2, 2),
section = c("videoinfo", "videoinfo", "videoinfo", "videoinfo"),
key = c("fps", "duration_s", "fps", "duration_s"),
value = c(30, 12.3, 25, 9.8),
stringsAsFactors = FALSE
)
writexl::write_xlsx(toy, tmp_in)
reshape_data(
input_filepath = tmp_in,
marker = "videoinfo",
id_col = "ID",
output_filepath = tmp_out
)
out <- readxl::read_excel(tmp_out)
print(out)
}
Generating the sum and adding a crossbar.
Description
Generating the sum and adding a crossbar.
Usage
stat_sum_df(fun, geom = "crossbar", ...)
Arguments
fun |
function |
geom |
geom to be shown |
... |
Additional arguments passed to stat_summary |
Value
A ggplot2 layer that can be added to a ggplot object.
Examples
# Simple summary function: use the mean as y, ymin, and ymax
mean_fun <- function(x) {
m <- mean(x, na.rm = TRUE)
data.frame(y = m, ymin = m, ymax = m)
}
ggplot2::ggplot(mtcars, ggplot2::aes(x = factor(cyl), y = mpg)) +
stat_sum_df(mean_fun)